, Volume 25, Issue 1, pp 171–180 | Cite as

Performance comparison of Ni Ex-soluted and impregnated La- and Y- doped Sr titanates as anode for solid oxide fuel cell

  • Mohamed Shahid
  • Pankaj Tiwari
  • Suddhasatwa BasuEmail author
Original Paper


Nickel is doped successfully at the B-site of La0.3Y0.1Sr0.4TiO3−δ (LYSTA) perovskite to yield La0.3Y0.1Sr0.4Ni0.04Ti0.96O3−δ (LYSNTA) for its use as an anode for solid oxide fuel cell (SOFC). Ex-soluted nickel particles from LYSNTA formed upon reduction in hydrogen show average particle size of 6 nm. Electrochemical studies are performed on bilayers of LYSTA/YSZ and LYSNTA/YSZ using electrochemical impedance spectroscopy (EIS) and their SOFC performance is compared with 4 wt% NiO-LYSTA/YSZ bilayer prepared by impregnation route. The activation energy (EA) for overall electrode polarization (Rp) shows the following trend: LYSTA (≈ 1.4 eV) > LYSNTA (1.1 eV) ≥ 4 wt% NiO-LYSTA (≈ 1.0 eV) in temperature range of 650–800 °C for H2 oxidation. SOFC performance of full cell containing LYSNTA anode is better compared to 4 wt% NiO-LYSTA anode during reversible testing from methane to hydrogen environment. Impregnation of 6 wt% CeO2 over LYSNTA anode in the full cell of SOFC gives a better performance than that without CeO2.


Ex-solution Perovskite Activation energy Impedance Anode/electrolyte bilayer 


Funding information

This study is with the financial support provided by the Defense Research and Development Organization (DRDO), India for carrying out the research activities.


  1. 1.
    Prakash BS, Kumar SS, Aruna S (2014) Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renew Sust Energ Rev 36:149–179CrossRefGoogle Scholar
  2. 2.
    Tiwari PK, Basu S (2017) CeO2 and Nb2O5 modified Ni-YSZ anode for solid oxide fuel cell. Ionics 23 (10):2571–2577CrossRefGoogle Scholar
  3. 3.
    Tiwari PK, Yue X, Irvine JT, Basu S (2017) La and Ca-doped a-site deficient strontium titanates anode for electrolyte supported direct methane solid oxide fuel cell. J Electrochem Soc 164(9):F1030–F1036CrossRefGoogle Scholar
  4. 4.
    Verbraeken MC, Ramos T, Agersted K, Ma Q, Savaniu CD, Sudireddy BR, Irvine JTS, Holtappels P, Tietz F (2015) Modified strontium titanates: from defect chemistry to SOFC anodes. RSC Advances 5(2):1168–1180CrossRefGoogle Scholar
  5. 5.
    Colomer M, Kilner J (2011) Ni-doped lanthanum gallate perovskites: Synthesis and structural, microstructural, and electrical characterisation. Solid State Ionics 182(1):76–81CrossRefGoogle Scholar
  6. 6.
    Eror N, Balachandran U (1981) Self-compensation in lanthanum-doped strontium titanate. J Solid State Chemistry 40(1):85–91CrossRefGoogle Scholar
  7. 7.
    Moos R, Bischoff T, Menesklou W, Hardtl K (1997) Solubility of lanthanum in strontium titanate in oxygen-rich atmospheres. J Mater Sci 32(16):4247–4252CrossRefGoogle Scholar
  8. 8.
    Slater PR, Fagg DP, Irvine JT (1997) Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells. J Mater Chem 7(12):2495–2498CrossRefGoogle Scholar
  9. 9.
    Liu J, Madsen BD, Ji Z, Barnett SA (2002) A fuel-flexible ceramic-based anode for solid oxide fuel cells. Electrochem Solid-State Lett 5(6):A122–A124CrossRefGoogle Scholar
  10. 10.
    Hansen TW, DeLaRiva AT, Challa SR, Datye AK (2013) Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?. Accounts Chem Res 46(8):1720–1730CrossRefGoogle Scholar
  11. 11.
    Neagu D, Irvine J (2013) Perovskite defect chemistry as exemplified by strontium titanate, vol 4. Elsevier, Netherlands, pp 397–415Google Scholar
  12. 12.
    Miller DN, Irvine JT (2011) B-site doping of lanthanum strontium titanate for solid oxide fuel cell anodes. J Power Sources 196(17):7323–7327CrossRefGoogle Scholar
  13. 13.
    Madsen B, Kobsiriphat W, Wang Y, Marks L, Barnett S (2007) Nucleation of nanometer-scale electrocatalyst particles in solid oxide fuel cell anodes. J Power Sources 166(1):64–67CrossRefGoogle Scholar
  14. 14.
    Sun Y, Li J, Zeng Y, Amirkhiz BS, Wang M, Behnamian Y, Luo J (2015) A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. J Mater Chem A 3(20):11048–11056CrossRefGoogle Scholar
  15. 15.
    Neagu D, Oh TS, Miller DN, Ménard H, Bukhari SM, Gamble SR, Gorte RJ, Vohs JM, Irvine JT (2015) Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nature Commun 6:8120CrossRefGoogle Scholar
  16. 16.
    Neagu D, Tsekouras G, Miller DN, Ménard H, Irvine JT (2013) In situ growth of nanoparticles through control of non-stoichiometry. Nature Chem 5(11):916–923CrossRefGoogle Scholar
  17. 17.
    Leonide A, Apel Y, Ivers-Tiffee E (2009) SOFC modeling and parameter identification by means of impedance spectroscopy. ECS Trans 19(20):81–109CrossRefGoogle Scholar
  18. 18.
    Neagu D, Irvine JT (2011) Enhancing electronic conductivity in strontium titanates through correlated A and B-site doping. Chem Mater 23(6):1607–1617CrossRefGoogle Scholar
  19. 19.
    Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B et al (2008) First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J Catal 259(1):147–160CrossRefGoogle Scholar
  20. 20.
    Pan YX, Liu CJ, Wiltowski TS, Ge Q (2009) CO2 adsorption and activation over γ-Al2O3-supported transition metal dimers: a density functional study. Catal Today 147(2):68–76CrossRefGoogle Scholar
  21. 21.
    Kleut D, Markovi Z, Babić B, Antunović IH, Milosavljević M, Dramićanin M, Marković BT (2013) Raman spectroscopy study of carbon-doped resorcinol-formaldehyde thin films. Physica Scripta 2013(T157):014039CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mohamed Shahid
    • 1
  • Pankaj Tiwari
    • 1
  • Suddhasatwa Basu
    • 1
    Email author
  1. 1.Department of Chemical EngineeringIndian Institute of TechnologyDelhiIndia

Personalised recommendations