Advertisement

Ionics

, Volume 25, Issue 1, pp 297–307 | Cite as

Ultrafine copper decorated polypyrrole nanotube electrode for nitrite detection

  • Yuqing Shen
  • Guodong Zhu
  • Jianmao Yang
  • Jianyun LiuEmail author
Original Paper
  • 95 Downloads

Abstract

In this report, a nitrite electrochemical sensor was developed by electrochemical deposition of copper nanoparticles on the polypyrrole nanotubes (PPy-Cu). The PPy nanotubes were synthesized via pyrrole polymerization on electrospun polystyrene nanofibers (PS) with the diameter of 150 nm, followed by PS removal. The prepared nanotubes were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Ultrafine Cu nanoparticles with the size of 4.2 ± 1.2 nm were uniformly deposited on PPy tubes by electrolysis. The existence of zero valence Cu particles was demonstrated by transmission electron microscopy (TEM) and X-ray photo spectroscopy (XPS). The electrochemical behaviors of the PPy and PPy-Cu electrodes were investigated by cyclic voltammetry (CV). PPy enhances the deposition of Cu dramatically and facilitates the uniform distribution of the copper nanoparticles. The obtained PPy-Cu exhibits an excellent catalytic activity to the reduction of nitrite. The catalytic performance of the resultant PPy-Cu electrodes was optimized by varying the PPy morphology and Cu deposition amount. Using hydrodynamic current-time curves, the linear relationship was obtained, under the optimized conditions, in the range of 0.1 μM to 1 mM with a limit of detection of 0.03 μM (S/N > 3). The sensor presents good reproducibility and stability for nitrite determination.

Keywords

Electrospinning Polypyrrole nanotubes Copper nanoparticle Nitrite reduction 

Notes

Funding information

This research was supported by the National Natural Science Foundation of China (Nos. 21476047, 21776045).

Supplementary material

11581_2018_2577_MOESM1_ESM.doc (3.5 mb)
ESM 1 (DOC 3583 kb)

References

  1. 1.
    Du Y, Shen SZ, Cai KF, Casey PS (2012) Research progress on polymer-inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37(6):820–841.  https://doi.org/10.1016/j.progpolymsci.2011.11.003 CrossRefGoogle Scholar
  2. 2.
    Shimomura K, Ikai T, Kanoh S, Yashima E, Maeda K (2014) Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nat Chem 6(5):429–434.  https://doi.org/10.1038/nchem.1916 CrossRefGoogle Scholar
  3. 3.
    Zeng Q, Cai P, Li Z, Qin JG, Tang BZ (2008) An imidazole-functionalized polyacetylene: convenient synthesis and selective chemosensor for metal ions and cyanide. Chem Commun (9):1094–1096.  https://doi.org/10.1039/b717764j
  4. 4.
    Hashemi P, Bagheri H, Afkhami A, Ardakani YH, Madrakian T (2017) Fabrication of a novel aptasensor based on three-dimensional reduced graphene oxide/polyaniline/gold nanoparticle composite as a novel platform for high sensitive and specific cocaine detection. Anal Chim Acta 996:10–19.  https://doi.org/10.1016/j.aca.2017.10.035 CrossRefGoogle Scholar
  5. 5.
    Zhang LL, Huang D, Hu NT, Yang C, Li M, Wei H, Yang Z, Su YJ, Zhang YF (2017) Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. J Power Sources 342:1–8. doi:10.1016/j.jpowsour.2016. 11.068CrossRefGoogle Scholar
  6. 6.
    Baker CO, Huang X, Nelson W, Kaner RB (2017) Polyaniline nanofibers: broadening applications for conducting polymers. Chem Soc Rev 46(5):1510–1525.  https://doi.org/10.1039/c6cs00555a CrossRefGoogle Scholar
  7. 7.
    Amidi S, Ardakani YH, Amiri-Aref M, Ranjbari E, Sepehri Z, Bagheri H (2017) Sensitive electrochemical determination of rifampicin using gold nanoparticles/poly-melamine nanocomposite. RSC Adv 7(64):40111–40118.  https://doi.org/10.1039/c7ra04865c CrossRefGoogle Scholar
  8. 8.
    Sepehri Z, Bagheri H, Ranjbari E, Amiri-Aref M, Amidi S, Rouini MR, Ardakani YH (2017) Simultaneous electrochemical determination of isoniazid and ethambutol using poly-melamine/electrodeposited gold nanoparticles modified pre-anodized glassy carbon electrode. Ionics.  https://doi.org/10.1007/s11581-017-2263-y
  9. 9.
    Molaei K, Bagheri H, Asgharinezhad AA, Ebrahimzadeh H, Shamsipur M (2017) SiO2-coated magnetic graphene oxide modified with polypyrrole-polythiophene: a novel and efficient nanocomposite for solid phase extraction of trace amounts of heavy metals. Talanta 167:607–616.  https://doi.org/10.1016/j.talanta.2017.02.066 CrossRefGoogle Scholar
  10. 10.
    Jeon SS, Kim C, Ko J, Im SS (2011) Pt nanoparticles supported on polypyrrole nanospheres as a catalytic counter electrode for dye-sensitized solar cells. J Phys Chem C 115(44):22035–22039.  https://doi.org/10.1021/jp206535c CrossRefGoogle Scholar
  11. 11.
    Ohkita H, Cook S, Astuti Y, Duffy W, Tierney S, Zhang W, Heeney M, McCulloch I, Nelson J, Bradley DDC, Durrant JR (2008) Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. J Am Chem Soc 130(10):3030–3042.  https://doi.org/10.1021/ja076568q CrossRefGoogle Scholar
  12. 12.
    Ghoorchian M, Tavoli F, Alizadeh N (2017) Long-term stability of nanostructured polypyrrole electrochromic devices by using deep eutectic solvents. J Electroanal Chem 807:70–75.  https://doi.org/10.1016/j.jelechem.2017.11.026 CrossRefGoogle Scholar
  13. 13.
    Shih HK, Chen YH, Chu YL, Cheng CC, Chang FC, Zhu CY, Kuo SW (2015) Photo-crosslinking of pendent uracil units provides supramolecular hole injection/transport conducting polymers for highly efficient light-emitting diodes. Polymers 7(5):804–818.  https://doi.org/10.3390/polym7050804 CrossRefGoogle Scholar
  14. 14.
    Sumanta S, Saptarshi D, Goutam H, Pallab B, Chapal KD (2013) Graphene/polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor. Polymer 54(3):1033–1042.  https://doi.org/10.1016/j.polymer.2012.12.042 CrossRefGoogle Scholar
  15. 15.
    Bose S, Kim NH, Kuila T, Lau KT, Lee JH (2011) Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology 22(29):9.  https://doi.org/10.1088/0957-4484/22/29/295202 CrossRefGoogle Scholar
  16. 16.
    Park H, Kim Y, Choi YS, Hong WH, Jung D (2008) Surface chemistry and physical properties of Nafion/polypyrrole/Pt composite membrane prepared by chemical in situ polymerization for DMFC. J Power Sources 178(2):610–619.  https://doi.org/10.1016/j.jpowsour.2007.08.050 CrossRefGoogle Scholar
  17. 17.
    Morozan A, Jegou P, Campidelli S, Palacin S, Jousselme B (2012) Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction. Chem Commun 48(38):4627–4629.  https://doi.org/10.1039/c2cc30871a CrossRefGoogle Scholar
  18. 18.
    Bagheri H, Hajian A, Rezaei M, Shirzadmehr A (2017) Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J Hazard Mater 324:762–772.  https://doi.org/10.1016/j.jhazmat.2016.11.055 CrossRefGoogle Scholar
  19. 19.
    Fu YZ, Manthiram A (2012) Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries. RSC Adv 2(14):5927–5929.  https://doi.org/10.1039/c2ra20393f CrossRefGoogle Scholar
  20. 20.
    Li J, Lin XQ (2007) Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens Bioelectron 22(12):2898–2905.  https://doi.org/10.1016/j.bios.2006.12.004 CrossRefGoogle Scholar
  21. 21.
    Liu FJ, Yuan Y, Li L, Shang SM, Yu XH, Zhang Q, Jiang SX, Wu YG (2015) Synthesis of polypyrrole nanocomposites decorated with silver nanoparticles with electrocatalysis and antibacterial property. Compos Pt B-Eng 69:232–236.  https://doi.org/10.1016/j.compositesb.2014.09.030 CrossRefGoogle Scholar
  22. 22.
    Dubal DP, Chodankar NR, Caban HZ, Wolfart F, Vidotti M, Holze R, Lokhande CD, Gomez RP (2016) Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors. J Power Sources 308:158–165.  https://doi.org/10.1016/j.jpowsour.2016.01.074 CrossRefGoogle Scholar
  23. 23.
    Liu JY, Qiu JX, Miao YQ, Chen JR (2008) Preparation and characterization of Pt-polypyrrole nanocomposite for electrochemical reduction of oxygen. J Mater Sci 43(18):6285–6288.  https://doi.org/10.1007/s10853-008-2905-6 CrossRefGoogle Scholar
  24. 24.
    Tsakova V (2008) How to affect number, size, and location of metal particles deposited in conducting polymer layers. J Solid State Electrochem 12(11):1421–1434.  https://doi.org/10.1007/s10008-007-0494-y CrossRefGoogle Scholar
  25. 25.
    Ulubay S, Dursun Z (2010) Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid. Talanta 80(3):1461–1466.  https://doi.org/10.1016/j.talanta.2009.09.054 CrossRefGoogle Scholar
  26. 26.
    Singh A, Salmi Z, Joshi N, Jha P, Decorse P, Lecoq H, Lau-Truong S, Jouini M, Aswal DK, Chehimi MM (2013) Electrochemical investigation of free-standing polypyrrole-silver nanocomposite films: a substrate free electrode material for supercapacitors. RSC Adv 3(46):24567–24575.  https://doi.org/10.1039/c3ra42786b CrossRefGoogle Scholar
  27. 27.
    Hnida KE, Socha RP, Sulka GD (2013) Polypyrrole-silver composite nanowire arrays by cathodic Co-deposition and their electrochemical properties. J Phys Chem C 117(38):19382–19392.  https://doi.org/10.1021/jp4038304 Google Scholar
  28. 28.
    Lakshinandan G, Neelotpal SS, Chowdhury D (2011) Determining the ionic and electronic contribution in conductivity of polypyrrole/Au nanocomposites. J Phys Chem C 115(40):19668–19675.  https://doi.org/10.1021/jp2075012 CrossRefGoogle Scholar
  29. 29.
    Chen W, Li CM, Yu L, Lu ZS, Zhou Q (2008) In situ AFM study of electrochemical synthesis of polypyrrole/Au nanocomposite. Electrochem Commun 10(9):1340–1343.  https://doi.org/10.1016/j.elecom.2008.07.001 CrossRefGoogle Scholar
  30. 30.
    Subramanyam K, Niteen J, Victoria JG (2016) In situ preparation and characterization of a conductive and magnetic nanocomposite of polypyrrole and copper hydroxychloride. RSC Adv 6(2):967–977.  https://doi.org/10.1039/c5ra20441k CrossRefGoogle Scholar
  31. 31.
    Nia PM, Meng WP, Lorestani F, Mahmoudian MR, Alias Y (2015) Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor. Sens Actuator B-Chem 209:100–108.  https://doi.org/10.1016/j.snb.2014.11.072 CrossRefGoogle Scholar
  32. 32.
    Bagheri H, Afkhami A, Khoshsafar H, Hajian A, Shahriyari A (2017) Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high performance platform for organophosphates enzymeless biosensor. Biosensors & bioelectronics 89 (Pt 2):829–836. doi: https://doi.org/10.1016/j.bios.2016.10.003
  33. 33.
    Makhloufi L, Hammache H, Saidani B, Akilal N, Maloum Y (2000) Preparation on iron of a polypyrrole (PPy) electrode modified with copper by the electrochemical cementation process. J Appl Electrochem 30(10):1143–1150.  https://doi.org/10.1023/a:1004098805227 CrossRefGoogle Scholar
  34. 34.
    Lu YC, Zheng QQ, Wu J, Yu YH (2018) Enhanced electrochemical charge storage performance by doping of copper phthalocyanine-3,4′,4″,4‴-tetrasulfonic acid tetrasodium salt into polypyrrole/multi- walled carbon nanotubes 3D-nanostructured electrodes. Electrochim Acta 265:594–600.  https://doi.org/10.1016/j.electacta.2018.01.173 CrossRefGoogle Scholar
  35. 35.
    Majumder M, Choudhary RB, Thakur AK, Karbhal I (2017) Impact of rare-earth metal oxide (Eu2O3) on the electrochemical properties of a polypyrrole/CuO polymeric composite for supercapacitor applications. RSC Adv 7(32):20037–20048.  https://doi.org/10.1039/c7ra01438d CrossRefGoogle Scholar
  36. 36.
    Liu J, Zhu G, Li X, Batchelor McAuley C, Sokolov SV, Compton RG (2017) Quantifying charge transfer to nanostructures: polyaniline nanotubes. Applied Materials Today 7:239–245.  https://doi.org/10.1016/j.apmt.2017.04.008 CrossRefGoogle Scholar
  37. 37.
    Bagheri H, Khoshsafar H, Afkhami A, Amidi S (2016) Sensitive and simple simultaneous determination of morphine and codeine using a Zn2SnO4 nanoparticle/graphene composite modified electrochemical sensor. New J Chem 40(8):7102–7112.  https://doi.org/10.1039/c6nj00505e CrossRefGoogle Scholar
  38. 38.
    Lee HK, Yang DS, Oh W, Choi SJ (2016) Copper ferrocyanide functionalized core-shell magnetic silica composites for the selective removal of cesium ions from radioactive liquid waste. J Nanosci Nanotechnol 16(6):6223–6230.  https://doi.org/10.1166/jnn.2016.10886 CrossRefGoogle Scholar
  39. 39.
    Sertchook H, Avnir D (2003) Submicron silica/polystyrene composite particles prepared by a one-step sol-gel process. Chem Mater 15(8):1690–1694.  https://doi.org/10.1021/cm020980h CrossRefGoogle Scholar
  40. 40.
    Lu GW, Li C, Shi GQ (2006) Polypyrrole micro- and nanowires synthesized by electrochemical polymerization of pyrrole in the aqueous solutions of pyrenesulfonic acid. Polymer 47(6):1778–1784.  https://doi.org/10.1016/j.polymer.2006.01.081 CrossRefGoogle Scholar
  41. 41.
    Yang Y, Chu Y, Yang FY, Zhang YP (2005) Uniform hollow conductive polymer microspheres synthesized with the sulfonated polystyrene template. Mater Chem Phys 92(1):164–171.  https://doi.org/10.1016/j.matchemphys.2005.01.007 CrossRefGoogle Scholar
  42. 42.
    Li X, Wan MX, Wei Y, Shen JY, Chen ZJ (2006) Electromagnetic functionalized and core-shell micro/nanostructured polypyrrole composites. J Phys Chem B 110(30):14623–14626.  https://doi.org/10.1021/jp062339z CrossRefGoogle Scholar
  43. 43.
    Liu J, Wan MX (2001) Polypyrrole doped with 1,5-naphthalenedisulfonic acid. Synth Met 124(2–3):317–321.  https://doi.org/10.1016/s0379-6779(01)00372-1 CrossRefGoogle Scholar
  44. 44.
    Zhang TT, Yuan R, Chai YQ, Li WJ, Ling SJ (2008) A novel nonenzymatic hydrogen peroxide sensor based on a polypyrrole nanowire-copper nanocomposite modified gold electrode. Sensors 8(8):5141–5152.  https://doi.org/10.3390/s8085141 CrossRefGoogle Scholar
  45. 45.
    Liu YC, Yang KH, Ger MD (2002) Mechanism of underpotential deposition of metal on conducting polymers. Synth Met 126(2–3):337–345.  https://doi.org/10.1016/s0379-6779(01)00581-1 CrossRefGoogle Scholar
  46. 46.
    Ghodselahi T, Vesaghi MA, Shafiekhani A, Baghizadeh A, Lameii M (2008) XPS study of the Cu@Cu2O core-shell nanoparticles. Appl Surf Sci 255(5):2730–2734.  https://doi.org/10.1016/j.apsusc.2008.08.110 CrossRefGoogle Scholar
  47. 47.
    Sekar R (2017) Synergistic effect of additives on electrodeposition of copper from cyanide-free electrolytes and its structural and morphological characteristics. Trans Nonferrous Metals Soc China 27(7):1665–1676.  https://doi.org/10.1016/s1003-6326(17)60189-4 CrossRefGoogle Scholar
  48. 48.
    Ghijsen J, Tjeng LH, Van EJ, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B 38(16):11322–11330.  https://doi.org/10.1103/PhysRevB.38.11322 CrossRefGoogle Scholar
  49. 49.
    Ye DX, Luo LQ, Ding YP, Chen Q, Liu X (2011) A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode. Analyst 136(21):4563–4569.  https://doi.org/10.1039/c1an15486a CrossRefGoogle Scholar
  50. 50.
    Wang HY, Huang YG, Tan Z, Hu XY (2004) Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Anal Chim Acta 526(1):13–17.  https://doi.org/10.1016/j.aca.2004.08.060 CrossRefGoogle Scholar
  51. 51.
    Zhang D, Fang YX, Miao ZY, Ma M, Du X, Takahashi S, Anzai J, Chen Q (2013) Direct electrodeposion of reduced graphene oxide and dendritic copper nanoclusters on glassy carbon electrode for electrochemical detection of nitrite. Electrochim Acta 107:656–663.  https://doi.org/10.1016/j.electacta.2013.06.015 CrossRefGoogle Scholar
  52. 52.
    Yang SL, Zeng XD, Liu XY, Wei WZ, Luo SL, Liu Y, Liu Y (2010) Electrocatalytic reduction and sensitive determination of nitrite at nano-copper coated multi-walled carbon nanotubes modified glassy carbon electrode. J Electroanal Chem 639(1–2):181–186.  https://doi.org/10.1016/j.jelechem.2009.11.014 CrossRefGoogle Scholar
  53. 53.
    Ko WY, Chen WH, Cheng CY, Lin KJ (2009) Highly electrocatalytic reduction of nitrite ions on a copper nanoparticles thin film. Sens Actuator B-Chem 137(2):437–441.  https://doi.org/10.1016/j.snb.2009.01.014 CrossRefGoogle Scholar
  54. 54.
    Ourari A, Ketfi B, Malha SIR, Amine A (2017) Electrocatalytic reduction of nitrite and bromate and their highly sensitive determination on carbon paste electrode modified with new copper Schiff base complex. J Electroanal Chem 797:31–36.  https://doi.org/10.1016/j.jelechem.2017.04.046 CrossRefGoogle Scholar
  55. 55.
    Shiddiky MJA, Won MS, Shim YB (2006) Simultaneous analysis of nitrate and nitrite in a microfluidic device with a Cu-complex-modified electrode. Electrophoresis 27(22):4545–4554.  https://doi.org/10.1002/elps.200600240 CrossRefGoogle Scholar
  56. 56.
    Madasamy T, Pandiaraj M, Balamurugan M, Bhargava K, Sethy NK, Karunakaran C (2014) Copper, zinc superoxide dismutase and nitrate reductase coimmobilized bienzymatic biosensor for the simultaneous determination of nitrite and nitrate. Biosens Bioelectron 52:209–215.  https://doi.org/10.1016/j.bios.2013.08.036 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuqing Shen
    • 1
  • Guodong Zhu
    • 1
  • Jianmao Yang
    • 2
  • Jianyun Liu
    • 1
    Email author
  1. 1.College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile IndustryDonghua UniversityShanghaiPeople’s Republic of China
  2. 2.Research Center for Analysis & MeasurementDonghua UniversityShanghaiPeople’s Republic of China

Personalised recommendations