Ionics

pp 1–10 | Cite as

Development of electrospun PAN/CoS nanocomposite membrane electrolyte for high-performance DSSC

  • Vignesh Murugadoss
  • Subasri Arunachalam
  • Vijayakumar Elayappan
  • Subramania Angaiah
Original Paper
  • 17 Downloads

Abstract

In the present work, we prepared electrospun polyacrylonitrile (PAN)/ cobalt sulfide (CoS) nanocomposite membranes by encapsulating different weight percentage (1, 2, and 3 wt%) of CoS nanoparticles in PAN nanofibers for dye-sensitized solar cells (DSSCs). The electrospun PAN/CoS nanocomposite membranes (esCPMs) were activated by immersing in an ionic liquid electrolyte containing 0.5 M LiI, 0.05 M I2, 0.5 M 4-tert butylpyridine and 0.5 M 1-butyl-3-methylimidazolium iodide in acetonitrile to obtain their corresponding nanocomposite membrane electrolytes (esCPMEs). The influences of CoS content on the physical and electrochemical properties of esPM were investigated. The addition of CoS nanoparticles reduced the degree of partial crystallinity of esPM to an amorphous state. An electrochemical impedance and Tafel polarization measurements revealed that the esCPME has high electrocatalytic activity with enhanced ionic conductivity. The 2 wt% CoS encapsulated esCPME ensured the effective charge transfer at the electrode/electrolyte interface with the lower electron recombination rate in DSSC, which ultimately increased the photoconversion efficiency (7.41%) at an incident light intensity of 100 mW cm−2.

Graphical Abstract

Polymer Membrane Electrolyte: The influence of CoS content on the physical and electrochemical properties of electrospun PAN membrane electrolyte is studied. The ion transport mechanism of DSSC fabricated with different wt% of CoS embedded esCPMEs is also studied. Among them, 2wt% of CoS embedded esCPME has improved photovoltaic performance of DSSC.

Keywords

Electrospinning Polyacrylonitrile Cobalt sulfide Polymer membrane electrolyte Photovoltaic performance 

Notes

Acknowledgements

Mr. MV is grateful to the Department of Science and Technology (DST), New Delhi for providing Fellowship under DST-Inspire Award (IF160290).

References

  1. 1.
    Brennan LJ, Barwich ST, Satti A, Faure A, Gun’ko YK (2013) Graphene-ionic liquid electrolytes for dye sensitised solar cells. J Mater Chem A 1(29):8379–8384.  https://doi.org/10.1039/C3TA11609C CrossRefGoogle Scholar
  2. 2.
    Murugadoss V, Wang N, Tadakamalla S, Wang B, Guo Z, Angaiah S (2017) In situ grown cobalt selenide/graphene nanocomposite counter electrodes for enhanced dye-sensitized solar cell performance. J Mater Chem A 5:14583–14594.  https://doi.org/10.1039/C7TA00941K CrossRefGoogle Scholar
  3. 3.
    Lee M, Balasingam SK, Ko Y, Jeong HY, Min BK, Yun YJ, Jun Y (2016) Graphene modified vanadium pentoxide nanobelts as an efficient counter electrode for dye-sensitized solar cells. Synth Met 215:110–115.  https://doi.org/10.1016/j.synthmet.2015.12.015 CrossRefGoogle Scholar
  4. 4.
    O'Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740CrossRefGoogle Scholar
  5. 5.
    Balasingam SK, Jun Y (2015) Recent progress on reduced graphene oxide-based counter electrodes for cost-effective dye-sensitized solar cells. Isr J Chem 55(9):955–965.  https://doi.org/10.1002/ijch.201400213 CrossRefGoogle Scholar
  6. 6.
    Balasingam SK, Kang MG, Jun Y (2013) Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges. Chem Commun 49(98):11457–11475.  https://doi.org/10.1039/C3CC46224B CrossRefGoogle Scholar
  7. 7.
    Ko K-W, Lee M, Sekhon SS, Balasingam SK, Han C-H, Jun Y (2013) Efficiency enhancement of dye-sensitized solar cells by the addition of an oxidizing agent to the TiO2 paste. ChemSusChem 6(11):2117–2123.  https://doi.org/10.1002/cssc.201300280 CrossRefGoogle Scholar
  8. 8.
    Salam Z, Vijayakumar E, Subramania A, Sivasankar N, Mallick S (2015) Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells. Sol Energy Mater Sol Cells 143:250–259.  https://doi.org/10.1016/j.solmat.2015.07.001 CrossRefGoogle Scholar
  9. 9.
    Balasingam SK, Lee M, Kang MG, Jun Y (2013) Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum. Chem Commun 49(15):1471–1487.  https://doi.org/10.1039/C2CC37616D CrossRefGoogle Scholar
  10. 10.
    Lim J, Lee M, Balasingam SK, Kim J, Kim D, Jun Y (2013) Fabrication of panchromatic dye-sensitized solar cells using pre-dye coated TiO2 nanoparticles by a simple dip coating technique. RSC Adv 3(14):4801–4805.  https://doi.org/10.1039/C3RA40339D CrossRefGoogle Scholar
  11. 11.
    Scully SR, Lloyd MT, Herrera R, Giannelis EP, Malliaras GG (2004) Dye-sensitized solar cells employing a highly conductive and mechanically robust nanocomposite gel electrolyte. Synth Met 144(3):291–296  https://doi.org/10.1016/j.synthmet.2004.04.011 CrossRefGoogle Scholar
  12. 12.
    Shibl HM, Hafez HS, Rifai RI, Abdel Mottaleb MSA (2013) Environmental friendly, low cost quasi solid state dye sensitized solar cell: polymer electrolyte introduction. J Inorg Organomet Polym Mater 23(4):944–949.  https://doi.org/10.1007/s10904-013-9874-1 CrossRefGoogle Scholar
  13. 13.
    Yuan S, Tang Q, He B, Zhao Y (2014) Multifunctional graphene incorporated conducting gel electrolytes in enhancing photovoltaic performances of quasi-solid-state dye-sensitized solar cells. Power Sourc 260:225–232.  https://doi.org/10.1016/j.jpowsour.2014.03.034 CrossRefGoogle Scholar
  14. 14.
    Zhao J, Jo S-G, Kim D-W (2014) Photovoltaic performance of dye-sensitized solar cells assembled with electrospun polyacrylonitrile/silica-based fibrous composite membranes. Electrochim Acta 142:261–267.  https://doi.org/10.1016/j.electacta.2014.07.109 CrossRefGoogle Scholar
  15. 15.
    Yuh-Lang L, Yu-Jen S, Yu-Min Y (2008) A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications. Nanotechnology 19(45):455201CrossRefGoogle Scholar
  16. 16.
    Kim J-K, Cheruvally G, Li X, Ahn J-H, Kim K-W, Ahn H-J (2008) Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries. J Power Sources 178(2):815–820.  https://doi.org/10.1016/j.jpowsour.2007.08.063 CrossRefGoogle Scholar
  17. 17.
    Priya ARS, Subramania A, Jung Y-S, Kim K-J (2008) High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF−HFP membrane electrolyte. Langmuir 24(17):9816–9819.  https://doi.org/10.1021/la801375s CrossRefGoogle Scholar
  18. 18.
    Dissanayake MAKL, Divarathne HKDWMNR, Thotawatthage CA, Dissanayake CB, Senadeera GKR, Bandara BMR (2014) Dye-sensitized solar cells based on electrospun polyacrylonitrile (PAN) nanofibre membrane gel electrolyte. Electrochim Acta 130:76–81.  https://doi.org/10.1016/j.electacta.2014.02.122 CrossRefGoogle Scholar
  19. 19.
    Ku Z, Li X, Liu G, Wang H, Rong Y, Xu M, Liu L, Hu M, Yang Y, Han H (2013) Transparent NiS counter electrodes for thiolate/disulfide mediated dye-sensitized solar cells. J Mater Chem A 1(2):237–240.  https://doi.org/10.1039/C2TA00304J CrossRefGoogle Scholar
  20. 20.
    Lin J-Y, Liao J-H (2012) Mesoporous electrodeposited-CoS film as a counter electrode catalyst in dye-sensitized solar cells. J Electrochem Soc 159(2):D65–D71CrossRefGoogle Scholar
  21. 21.
    Lin J-Y, Liao J-H, Wei T-C (2011) Honeycomb-like CoS counter electrodes for transparent dye-sensitized solar cells. Electrochem Solid-State Lett 14(4):D41–D44CrossRefGoogle Scholar
  22. 22.
    Sun H, Qin D, Huang S, Guo X, Li D, Luo Y, Meng Q (2011) Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ Sci 4(8):2630–2637.  https://doi.org/10.1039/C0EE00791A CrossRefGoogle Scholar
  23. 23.
    Vijayakumar E, Subramania A, Fei Z, Dyson PJ (2015) High-performance dye-sensitized solar cell based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/cobalt sulfide nanocomposite membrane electrolyte. RSC Adv 5(64):52026–52032.  https://doi.org/10.1039/C5RA04944J CrossRefGoogle Scholar
  24. 24.
    Bao S-J, Li CM, Guo C-X, Qiao Y (2008) Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors. J Power Sources 180(1):676–681.  https://doi.org/10.1016/j.jpowsour.2008.01.085 CrossRefGoogle Scholar
  25. 25.
    Solarajan AK, Murugadoss V, Angaiah S (2017) High performance electrospun PVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors. J Appl Polym Sci 134(32):45177.  https://doi.org/10.1002/app.45177 CrossRefGoogle Scholar
  26. 26.
    Subramania A, Vijayakumar E, Sivasankar N, Sathiya Priya AR, Kim K-J (2013) Effect of different compositions of ethylene carbonate and propylene carbonate containing iodide/triiodide redox electrolyte on the photovoltaic performance of DSSC. Ionics 19(11):1649–1653.  https://doi.org/10.1007/s11581-013-0892-3 CrossRefGoogle Scholar
  27. 27.
    Panthi G, Barakat NAM, Abdelrazek Khalil K, Yousef A, Jeon K-S, Kim HY (2013) Encapsulation of CoS nanoparticles in PAN electrospun nanofibers: effective and reusable catalyst for ammonia borane hydrolysis and dyes photodegradation. Ceram Int 39(2):1469–1476.  https://doi.org/10.1016/j.ceramint.2012.07.091 CrossRefGoogle Scholar
  28. 28.
    Chan Y-F, Wang C-C, Chen C-Y (2013) Quasi-solid DSSC based on a gel-state electrolyte of PAN with 2-D graphenes incorporated. J Mater Chem A 1(18):5479–5486.  https://doi.org/10.1039/C3TA01684F CrossRefGoogle Scholar
  29. 29.
    Ramachandran R, Felix S, Saranya M, Santhosh C, Velmurugan V, Ragupathy BPC, Jeong SK, Grace AN (2013) Synthesis of cobalt sulfide-graphene (CoS/G) nanocomposites for supercapacitor applications. IEEE Trans Nanotechnol 12(6):985–990.  https://doi.org/10.1109/TNANO.2013.2278287 CrossRefGoogle Scholar
  30. 30.
    Bi H, Jiang X, Yang C, Hong J (2003) Synthesis of cobalt disulfide nanoparticles in polymer matrix. Mater Lett 57(16):2606–2611.  https://doi.org/10.1016/S0167-577X(02)01336-8 CrossRefGoogle Scholar
  31. 31.
    Sathisha TV, Swamy BEK, Reddy S, Chandrashekar BN, Eswarappa B (2012) Clay modified carbon paste electrode for the voltammetric detection of dopamine in presence of ascorbic acid. J Mol Liq 172:53–58.  https://doi.org/10.1016/j.molliq.2012.05.005 CrossRefGoogle Scholar
  32. 32.
    Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2005) Characterization and properties of P(VdF-HFP)-based fibrous polymer electrolyte membrane prepared by electrospinning. J Electrochem Soc 152(2):A295–A300.  https://doi.org/10.1149/1.1839531 CrossRefGoogle Scholar
  33. 33.
    Solarajan AK, Murugadoss V, Angaiah S (2017) Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors. Sci Rep 7:45390.  https://doi.org/10.1038/srep45390 CrossRefGoogle Scholar
  34. 34.
    Kim J-U, Park S-H, Choi H-J, Lee W-K, Lee J-K, Kim M-R (2009) Effect of electrolyte in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers on dye-sensitized solar cells. Sol Energy Mater Sol Cells 93(6):803–807.  https://doi.org/10.1016/j.solmat.2008.09.045 CrossRefGoogle Scholar
  35. 35.
    Li Q, Chen X, Tang Q, Cai H, Qin Y, He B, Li M, Jin S, Liu Z (2014) Enhanced photovoltaic performances of quasi-solid-state dye-sensitized solar cells using a novel conducting gel electrolyte. J Power Sources 248:923–930.  https://doi.org/10.1016/j.jpowsour.2013.10.025 CrossRefGoogle Scholar
  36. 36.
    Zhou H, Shi Y, Qin D, An J, Chu L, Wang C, Wang Y, Guo W, Wang L, Ma T (2013) Printable fabrication of Pt-and-ITO free counter electrodes for completely flexible quasi-solid dye-sensitized solar cells. J Mater Chem A 1(12):3932–3937.  https://doi.org/10.1039/C3TA00960B CrossRefGoogle Scholar
  37. 37.
    Yang Y, Zhang J, Zhou C, Wu S, Xu S, Liu W, Han H, Chen B, Zhao X-Z (2008) Effect of lithium iodide addition on poly(ethylene oxide)-poly(vinylidene fluoride) polymer-blend electrolyte for dye-sensitized nanocrystalline solar cell. J Phys Chem B 112(21):6594–6602.  https://doi.org/10.1021/jp801156h CrossRefGoogle Scholar
  38. 38.
    Vijayakumar E, Subramania A, Fei Z, Dyson PJ (2015) Effect of 1-butyl-3-methylimidazolium iodide containing electrospun poly(vinylidene fluoride-co-hexafluoropropylene) membrane electrolyte on the photovoltaic performance of dye-sensitized solar cells. J Appl Polym Sci 132(23):42032.  https://doi.org/10.1002/app.42032 Google Scholar
  39. 39.
    Dissanayake SS, Dissanayake MAKL, Seneviratne VA, Senadeera GKR, Thotawattage CA (2016) Performance of dye sensitized solar cells fabricated with electrospun polymer nanofiber based electrolyte. Mater Today 3:S104–S111.  https://doi.org/10.1016/j.matpr.2016.01.014 CrossRefGoogle Scholar
  40. 40.
    Fathy M, Kashyout AB, El Nady J, Ebrahim S, Soliman MB (2016) Electrospun polymethylacrylate nanofibers membranes for quasi-solid-state dye sensitized solar cells. Alex Eng J 55(2):1737–1743.  https://doi.org/10.1016/j.aej.2016.03.019 CrossRefGoogle Scholar
  41. 41.
    Mohan VM, Murakami K, Kono A, Shimomura M (2013) Poly(acrylonitrile)/activated carbon composite polymer gel electrolyte for high efficiency dye sensitized solar cells. J Mater Chem A 1(25):7399–7407.  https://doi.org/10.1039/C3TA10392G CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Vignesh Murugadoss
    • 1
  • Subasri Arunachalam
    • 1
    • 2
  • Vijayakumar Elayappan
    • 1
    • 3
  • Subramania Angaiah
    • 1
  1. 1.Electrochemical Energy Research Lab, Centre for Nanoscience and TechnologyPondicherry UniversityPuducherryIndia
  2. 2.Department of ChemistryKalasalingam UniversityKrishnankovilIndia
  3. 3.School of Chemical EngineeringYeungnam UniversityGyeongsanRepublic of Korea

Personalised recommendations