, Volume 24, Issue 10, pp 3209–3219 | Cite as

Electrochemical sensor based on gold nanoparticle-multiwall carbon nanotube nanocomposite for the sensitive determination of docetaxel as an anticancer drug

  • Shabnam Najari
  • Hasan BagheriEmail author
  • Zahra Monsef-Khoshhesab
  • Ali Hajian
  • Abbas Afkhami
Original Paper


For the first time, a sensitive and selective method for determination of docetaxel (as an anti-cancer drug) at gold nanoparticle-multiwall carbon nanotubes/glassy carbon electrode (Au-MWCNTs/GCE) was suggested using cyclic voltammetry and differential pulse anodic stripping voltammetry (DPASV) method. After the construction of the electrochemical sensor and optimization of the effective parameters such as pH, accumulation time, and potential, the sensor was applied for the determination of docetaxel in the range of 0.3–3.3 μmol L−1. The results show that Au-MWCNTs significantly catalyzed the redox reaction of docetaxel during electrochemical detection. The limit of detection was estimated to be 90 nmol L−1 based on 3Sb/m. The performed studies showed that Au-MWCNTs/GCE has a good selectivity, sensitivity, and reproducibility. This sensor was used to determine the docetaxel in real samples (human urine and human serum), and the obtained data illustrate that fabricated electrochemical sensor is promising for use in routine analytical applications.


Modified electrodes Electrochemical sensors Docetaxel Gold nanoparticles Electrocatalytic determination 



This research was supported by the Research Office of the Payame Noor University.

Supplementary material

11581_2018_2517_MOESM1_ESM.pdf (307 kb)
ESM 1 (PDF 307 kb)


  1. 1.
    Li P, Li S, Gu H, Lu Q, Jiang W, Pei X, Sun Y, Xu H, Wang G, Hao K (2018) The exposure-effect-toxicity correlation of docetaxel and magnesium isoglycyrrhizinate in non-small cell lung tumor-bearing mice. Biomed Pharmacother 97:1000–1010CrossRefGoogle Scholar
  2. 2.
    Kim DW, Yousaf AM, Li DX, Kim JO, Yong CS, Cho KH, Choi H-G (2017) Development of RP-HPLC method for simultaneous determination of docetaxel and curcumin in rat plasma: validation and stability. Asian J Pharmaceutical Sci 12(1):105–113CrossRefGoogle Scholar
  3. 3.
    Su C-Y, Liu J-J, Ho Y-S, Huang Y-Y, Chang VH-S, Liu D-Z, Chen L-C, Ho H-O, Sheu M-T (2017) Development and characterization of docetaxel-loaded lecithin-stabilized micellar drug delivery system (LsbMDDs) for improving the therapeutic efficacy and reducing systemic toxicity. European Journal of Pharmaceutics and BiopharmaceuticsGoogle Scholar
  4. 4.
    da Silva CBP, Julio IP, Donadel GE, Martins I (2016) UPLC-MS/MS method for simultaneous determination of cyclophosphamide, docetaxel, doxorubicin and 5-fluorouracil in surface samples. J Pharmacol Toxicol Methods 82:68–73CrossRefGoogle Scholar
  5. 5.
    Kuppens I, Van Maanen M, Rosing H, Schellens J, Beijnen J (2005) Quantitative analysis of docetaxel in human plasma using liquid chromatography coupled with tandem mass spectrometry. Biomed Chromatogr 19(5):355–361CrossRefGoogle Scholar
  6. 6.
    López LZ, Pastor AA, Beitia JMA, Velilla JA, Deiró JG (2006) Determination of docetaxel and paclitaxel in human plasma by high-performance liquid chromatography: validation and application to clinical pharmacokinetic studies. Ther Drug Monit 28(2):199–205CrossRefGoogle Scholar
  7. 7.
    Zhao X, Bi K, Wang X, Xue X, He B, Cui Y, Liu Z, Wang D, Chen X (2013) A UFLC–MS/MS method coupled with one-step protein precipitation for determination of docetaxel in rat plasma: comparative pharmacokinetic study of modified nanostructured lipid carrier. J Pharm Biomed Anal 83:202–208CrossRefGoogle Scholar
  8. 8.
    Bitsch F, Ma W, Macdonald F, Nieder M, Shackleton CH (1993) Analysis of taxol and related diterpenoids from cell cultures by liquid chromatography-electrospray mass spectrometry. J Chromatogr B Biomed Sci Appl 615(2):273–280CrossRefGoogle Scholar
  9. 9.
    Poon G, Wade J, Bloomer J, Clarke S, Maltas J (1996) Rapid screening of taxol metabolites in human microsomes by liquid chromatography/electrospray ionization-mass spectrometry. Rapid Commun Mass Spectrom 10(10):1165–1168CrossRefGoogle Scholar
  10. 10.
    Hempel G, Lehmkuhl D, Krümpelmann S, Blaschke G, Boos J (1996) Determination of paclitaxel in biological fluids by micellar electrokinetic chromatography. J Chromatogr A 745(1–2):173–179CrossRefGoogle Scholar
  11. 11.
    Leu J-G, Chen B-X, Schiff PB, Erlanger BF (1993) Characterization of polyclonal and monoclonal anti-taxol antibodies and measurement of taxol in serum. Cancer Res 53(6):1388–1391PubMedGoogle Scholar
  12. 12.
    Svojanovsky SR, Egodage KL, Wu J, Slavik M, Wilson GS (1999) High sensitivity ELISA determination of taxol in various human biological fluids. J Pharm Biomed Anal 20(3):549–555CrossRefGoogle Scholar
  13. 13.
    Ardiet CJ, Tranchand B, Zanetta S, Guillot A, Bernard E, Peguy M, Rebattu P, Droz J-P (1999) A sensitive docetaxel assay in plasma by solid-phase extraction and high performance liquid chromatography–UV detection: validation and suitability in phase I clinical trial pharmacokinetics. Investig New Drugs 17(4):325–333CrossRefGoogle Scholar
  14. 14.
    Sepehri Z, Bagheri H, Ranjbari E, Amiri-Aref M, Amidi S, Rouini MR, Hosseinzadeh Ardakani Y (2018) Simultaneous electrochemical determination of isoniazid and ethambutol using poly-melamine/electrodeposited gold nanoparticles modified pre-anodized glassy carbon electrode. Ionics, DOI 10.1007/s11581-017-2263-yGoogle Scholar
  15. 15.
    Bagheri H, Khoshsafar H, Afkhami A, Amidi S (2016) Sensitive and simple simultaneous determination of morphine and codeine using a Zn2SnO4 nanoparticle/graphene composite modified electrochemical sensor. New J Chem 40:7102–7112CrossRefGoogle Scholar
  16. 16.
    Gupta VK, Kumar S, Singh R, Singh LP, Shoora SK, Sethi B (2014) Cadmium (II) ion sensing through p-tert-butyl calix [6] arene based potentiometric sensor. J Mol Liq 195:65–68CrossRefGoogle Scholar
  17. 17.
    Gupta VK, Sethi B, Sharma RA, Agarwal S, Bharti A (2013) Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. J Mol Liq 177:114–118CrossRefGoogle Scholar
  18. 18.
    Khani H, Rofouei MK, Arab P, Gupta VK, Vafaei Z (2010) Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion (II). J Hazard Mater 183(1–3):402–409CrossRefGoogle Scholar
  19. 19.
    Goyal RN, Gupta VK, Chatterjee S (2010) Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sensors Actuators B Chem 149(1):252–258CrossRefGoogle Scholar
  20. 20.
    Shiri S, Pajouheshpoor N, Khoshsafar H, Amidi S, Bagheri H (2017) An electrochemical sensor for the simultaneous determination of rifampicin and isoniazid using a C-dots@CuFe2O4 nanocomposite modified carbon paste electrode. New J Chem 41:15564–15573CrossRefGoogle Scholar
  21. 21.
    Gupta VK, Jain AK, Maheshwari G, Lang H, Ishtaiwi Z (2006) Copper (II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sensors Actuators B Chem 117(1):99–106CrossRefGoogle Scholar
  22. 22.
    Gupta VK, Singh AK, Mehtab S, Gupta B (2006) A cobalt (II)-selective PVC membrane based on a Schiff base complex of N,N′-bis (salicylidene)-3, 4-diaminotoluene. Anal Chim Acta 566(1):5–10CrossRefGoogle Scholar
  23. 23.
    Bagheri H, Pajooheshpour N, Jamali B, Amidi S, Hajian A, Khoshsafar H (2017) A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4-SnO2-Gr ternary nanocomposite. Microchem J 131:120–129CrossRefGoogle Scholar
  24. 24.
    Gupta VK, Jain S, Chandra S (2003) Chemical sensor for lanthanum (III) determination using aza-crown as ionophore in poly (vinyl chloride) matrix. Anal Chim Acta 486(2):199–207CrossRefGoogle Scholar
  25. 25.
    Gupta VK, Jain AK, Kumar P (2006) PVC-based membranes of N, N′-dibenzyl-1, 4, 10, 13-tetraoxa-7, 16-diazacyclooctadecane as Pb (II)-selective sensor. Sensors Actuators B Chem 120(1):259–265CrossRefGoogle Scholar
  26. 26.
    Prasad R, Gupta VK, Kumar A (2004) Metallo-tetraazaporphyrin based anion sensors: regulation of sensor characteristics through central metal ion coordination. Anal Chim Acta 508(1):61–70CrossRefGoogle Scholar
  27. 27.
    Jain R, Gupta VK, Jadon N, Radhapyari K (2010) Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Anal Biochem 407(1):79–88CrossRefGoogle Scholar
  28. 28.
    Gupta VK, Chandra S, Mangla R (2002) Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor. Electrochim Acta 47(10):1579–1586CrossRefGoogle Scholar
  29. 29.
    Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Shirzadmehr A (2013) Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sensors Actuators B Chem 186:451–460CrossRefGoogle Scholar
  30. 30.
    Bagheri H, Shirzadmehr A, Rezaei M, Khoshsafar H (2018) Determination of tramadol in pharmaceutical products and biological samples using a new nanocomposite carbon paste sensor based on decorated nanographene/tramadol-imprinted polymer nanoparticles/ionic liquid. Ionics 24:833–843CrossRefGoogle Scholar
  31. 31.
    Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Sabounchei SJ, Sarlakifar M (2015) Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode. Anal Chim Acta 870:56–66CrossRefGoogle Scholar
  32. 32.
    Bagheri H, Afkhami A, Khoshsafar H, Hajian A, Shahriyari A (2017) Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high performance platform for organophosphates enzymeless biosensor. Biosens Bioelectron 89:829–836CrossRefGoogle Scholar
  33. 33.
    Bagheri H, Hajian A, Rezaei M, Shirzadmehr A (2017) Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J Hazard Mater 324:762–772CrossRefGoogle Scholar
  34. 34.
    Nekoueian K, Amiri M, Sillanpaa M (2017) Carbon paste electrode with Au/Pd/MWCNT nanocomposite for nanomolar determination of timolol. Int J Electrochem Sci 12(2):1612–1624CrossRefGoogle Scholar
  35. 35.
    Sahoo S, Satpati A, Reddy A (2015) Electrodeposited Bi-Au nanocomposite modified carbon paste electrode for the simultaneous determination of copper and mercury. RSC Adv 5(33):25794–25800CrossRefGoogle Scholar
  36. 36.
    Afzali D, Zarei S, Fathirad F, Mostafavi A (2014) Gold nanoparticles modified carbon paste electrode for differential pulse voltammetric determination of eugenol. Mater Sci Eng C 43:97–101CrossRefGoogle Scholar
  37. 37.
    Afkhami A, Soltani-Felehgari F, Madrakian T (2013) Gold nanoparticles modified carbon paste electrode as an efficient electrochemical sensor for rapid and sensitive determination of cefixime in urine and pharmaceutical samples. Electrochim Acta 103:125–133CrossRefGoogle Scholar
  38. 38.
    Duan J, He D, Wang W, Liu Y, Wu H, Wang Y, Fu M (2013) Glassy carbon electrode modified with gold nanoparticles for ractopamine and metaproterenol sensing. Chem Phys Lett 574:83–88CrossRefGoogle Scholar
  39. 39.
    Zhang Z, Pfefferle L, Haller GL (2015) Characterization of functional groups on oxidized multi-wall carbon nanotubes by potentiometric titration. Catal Today 249:23–29CrossRefGoogle Scholar
  40. 40.
    Valentini F, Amine A, Orlanducci S, Terranova ML, Palleschi G (2003) Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Anal Chem 75(20):5413–5421CrossRefGoogle Scholar
  41. 41.
    Shu H, Cao L, Chang G, He H, Zhang Y, He Y (2014) Direct electrodeposition of gold nanostructures onto glassy carbon electrodes for non-enzymatic detection of glucose. Electrochim Acta 132:524–532CrossRefGoogle Scholar
  42. 42.
    Sanzó G, Taurino I, Antiochia R, Gorton L, Favero G, Mazzei F et al (2016) Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose. Bioelectrochemistry 112:125–131CrossRefGoogle Scholar
  43. 43.
    Fu C, Li M, Li H, Li C, guo Wu X, Yang B (2017) Fabrication of Au nanoparticle/TiO2 hybrid films for photoelectrocatalytic degradation of methyl orange. J Alloys Compd 692:727–733CrossRefGoogle Scholar
  44. 44.
    Lee M, Kim D (2016) Non-enzymatic carbohydrates detection based on Au modified MWCNT field-effect transistor. Mater Lett 169:257–261CrossRefGoogle Scholar
  45. 45.
    Zeinali H, Bagheri H, Monsef-Khoshhesab Z, Khoshsafar H, Hajian A (2017) Nanomolar simultaneous determination of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO2-Co3O4@rGO nanocomposite. Mater Sci Eng C 71:386–394CrossRefGoogle Scholar
  46. 46.
    Gowda JI, Nandibewoor ST (2014) Electrochemical behavior of paclitaxel and its determination at glassy carbon electrode. Asian J Pharmaceutical Sci 9:42–49CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shabnam Najari
    • 1
  • Hasan Bagheri
    • 2
    Email author
  • Zahra Monsef-Khoshhesab
    • 1
  • Ali Hajian
    • 3
  • Abbas Afkhami
    • 4
  1. 1.Department of ChemistryPayame Noor UniversityQazvinIran
  2. 2.Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
  3. 3.Institute of Sensor and Actuator SystemsTU WienViennaAustria
  4. 4.Faculty of ChemistryBu-Ali Sina UniversityHamedanIran

Personalised recommendations