Advertisement

Ionics

, Volume 24, Issue 10, pp 2965–2972 | Cite as

A lithium salt additive Li2ZrF6 for enhancing the electrochemical performance of high-voltage LiNi0.5Mn1.5O4 cathode

  • Juntian Fan
  • Tao Dong
  • Daliang Fang
  • Xuefeng Li
  • Xian’en Mo
  • Kaihua Wen
  • Shimou Chen
  • Suojiang Zhang
Original Paper
  • 226 Downloads

Abstract

In this work, Li2ZrF6, a lithium salt additive, is reported to improve the interface stability of LiNi0.5Mn1.5O4 (LNMO)/electrolyte interface under high voltage (4.9 V vs Li/Li+). Li2ZrF6 is an effective additive to serve as an in situ surface coating material for high-voltage LNMO half cells. A protective SEI layer is formed on the electrode surface due to the involvement of Li2ZrF6 during the formation of SEI layer. Charge/discharge tests show that 0.15 mol L−1 Li2ZrF6 is the optimal concentration for the LiNi0.5Mn1.5O4 electrode and it can improve the cycling performance and rate property of LNMO/Li half cells. The results obtained by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) demonstrate that Li2ZrF6 can facilitate the formation of a thin, uniform, and stable solid electrolyte interface (SEI) layer. This layer inhibits the oxidation decomposition of the electrolyte and suppresses the dissolution of the cathode materials, resulting in improved electrochemical performances.

Keywords

Lithium ion batteries Electrolyte Additives Lithium fluorozirconate 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (No. 91534109), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XDA09010103), National Key Projects for Fundamental Research and Development of China (No. 2016YFB0100104), and International Partnership Program for Creative Research Teams (20140491518).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11581_2018_2512_MOESM1_ESM.pdf (533 kb)
ESM 1 (PDF 533 kb)

References

  1. 1.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176.  https://doi.org/10.1021/ja3091438 CrossRefPubMedGoogle Scholar
  2. 2.
    Li Q, Chen J, Fan L, Kong XQ, Lu YY (2016) Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ 1(1):18–42.  https://doi.org/10.1016/j.gee.2016.04.006 CrossRefGoogle Scholar
  3. 3.
    Li WW, Chen SM, Yu J, Fang DL, Ren BZ, Zhang SJ (2016) In-situ synthesis of interconnected SWCNT/OMC framework on silicon nanoparticles for high performance lithium-ion batteries. Green Energy Environ 1(1):91–99.  https://doi.org/10.1016/j.gee.2016.04.005 CrossRefGoogle Scholar
  4. 4.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262.  https://doi.org/10.1039/c1ee01598b CrossRefGoogle Scholar
  5. 5.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417.  https://doi.org/10.1021/cr030203g CrossRefPubMedGoogle Scholar
  6. 6.
    Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114(23):11503–11161.  https://doi.org/10.1021/cr500003w CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang ZC, Hu LB, Wu HM, Weng W, Koh M, Redfern PC, Curtiss LA, Amine K (2013) Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ Sci 6(6):1806–1810.  https://doi.org/10.1039/c3ee24414h CrossRefGoogle Scholar
  8. 8.
    Zheng RJ, Wang WH, Dai YK, Ma QX, Liu YL, Mu DY, Li RH, Ren J, Dai CS (2017) A closed-loop process for recycling LiNixCoyMn(1−x−y)O2 from mixed cathode materials of lithium-ion batteries. Green Energy Environ 2:42–50.  https://doi.org/10.1016/j.gee.2016.11.010 CrossRefGoogle Scholar
  9. 9.
    Manthiram A, Chemelewski K, Lee ES (2014) A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ Sci 7(4):1339–1350.  https://doi.org/10.1039/c3ee42981d CrossRefGoogle Scholar
  10. 10.
    Brandt A, Balducci A, Rodehorst U, Menne S, Winter M, Bhaskar A (2014) Investigations about the use and the degradation mechanism of LiNi0.5Mn1.5O4 in a high power LIC. J Electrochem Soc 161(6):A1139–A1143.  https://doi.org/10.1149/2.105406je CrossRefGoogle Scholar
  11. 11.
    Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603.  https://doi.org/10.1021/cm901452z CrossRefGoogle Scholar
  12. 12.
    Su CC, He MN, Peebles C, Zeng L, Tornheim A, Liao C, Zhang L, Wang J, Wang Y, Zhang CC (2017) Functionality selection principle for high voltage lithium-ion battery electrolyte additives. ACS Appl Mater Interfaces 9(36):30686–30695.  https://doi.org/10.1021/acsami.7b08953 CrossRefPubMedGoogle Scholar
  13. 13.
    Lu DS, Xu MQ, Zhou L, Garsuch A, Lucht BL (2013) Failure mechanism of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature. J Electrochem Soc 160(5):A3138–A3143.  https://doi.org/10.1149/2.022305jes CrossRefGoogle Scholar
  14. 14.
    Shao N, Sun XG, Dai S, Jiang DE (2011) Electrochemical windows of sulfone-based electrolytes for high-voltage li-ion batteries. J Phys Chem B 115(42):12120–12125.  https://doi.org/10.1021/jp204401t CrossRefPubMedGoogle Scholar
  15. 15.
    Wu F, Zhou H, Bai Y, Wang HL, Wu C (2015) Toward 5 V Li-ion batteries: quantum chemical calculation and electrochemical characterization of Sulfone-based high-voltage electrolytes. ACS Appl Mater Interfaces 7(27):15098–15107.  https://doi.org/10.1021/acsami.5b04477 CrossRefPubMedGoogle Scholar
  16. 16.
    Xia J, Dahn JR (2016) Improving sulfolane-based electrolyte for high voltage Li-ion cells with electrolyte additives. J Power Sources 324:704–711.  https://doi.org/10.1016/j.jpowsour.2016.06.008 CrossRefGoogle Scholar
  17. 17.
    Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A (2014) Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc 136(13):5039–5046.  https://doi.org/10.1021/ja412807w CrossRefPubMedGoogle Scholar
  18. 18.
    Pandian S, Raju SG, Hariharan KS, Kolake SM, Park DH, Lee MJ (2015) Functionalized ionic liquids as electrolytes for lithium-ion batteries. J Power Sources 286:204–209.  https://doi.org/10.1016/j.jpowsour.2015.03.130 CrossRefGoogle Scholar
  19. 19.
    Zheng XZ, Wang WG, Huang T, Fang GH, Pan Y, Wu MX (2016) Evaluation of di(2,2,2-trifluoroethyl) sulfite as a film-forming additive on the MCMB anode of lithium-ion batteries. J Power Sources 329:450–455.  https://doi.org/10.1016/j.jpowsour.2016.08.108 CrossRefGoogle Scholar
  20. 20.
    Liu WJ, Shi Q, Qu QT, Gao T, Zhu GB, Shao J, Zheng HH (2017) Improved Li-ion diffusion and stability of a LiNi0.5Mn1.5O4 cathode through in situ co-doping with dual-metal cations and incorporation of a superionic conductor. J Mater Chem A 5(1):145–154.  https://doi.org/10.1039/c6ta08891k CrossRefGoogle Scholar
  21. 21.
    Wang G, Wen WC, Chen SH, Yu RZ, Wang XY, Yang XK (2016) Improving the electrochemical performances of spherical LiNi0.5Mn1.5O4 by Fe2O3 surface coating for lithium-ion batteries. Electrochim Acta 212:791–799.  https://doi.org/10.1016/j.electacta.2016.07.025 CrossRefGoogle Scholar
  22. 22.
    Hwang T, Lee JK, Mun J, Choi W (2016) Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries. J Power Sources 322:40–48.  https://doi.org/10.1016/j.jpowsour.2016.04.118 CrossRefGoogle Scholar
  23. 23.
    Xu MQ, Zhou L, Dong YN, Chen YJ, Garsuch A, Lucht BL (2013) Improving the performance of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature with added lithium Bis(oxalato) borate (LiBOB). J Electrochem Soc 160(11):A2005–A2013.  https://doi.org/10.1149/2.053311jes CrossRefGoogle Scholar
  24. 24.
    Luo Y, Lu TL, Zhang YX, Yan LQ, Xie JY, Mao SS (2016) Enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode using an electrolyte with 3-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoropropane. J Power Sources 323:134–141.  https://doi.org/10.1016/j.jpowsour.2016.05.053 CrossRefGoogle Scholar
  25. 25.
    Kim S, Kim M, Choi I, Kim JJ (2016) Quercetin as electrolyte additive for LiNi0.5Mn1.5O4 cathode for lithium-ion secondary battery at elevated temperature. J Power Sources 336:316–324.  https://doi.org/10.1016/j.jpowsour.2016.10.079 CrossRefGoogle Scholar
  26. 26.
    Rong HB, Xu MQ, Xie BY, Lin HB, Zhu YM, Zheng XW, Huang WZ, Liao YH, Xing LD, Li WS (2016) A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0.5Mn1.5O4 cathodes. J Power Sources 329:586–593.  https://doi.org/10.1016/j.jpowsour.2016.07.120 CrossRefGoogle Scholar
  27. 27.
    Xu Y, Wan LY, Liu JL, Zeng LC, Yang ZG (2017) g-butyrolactone and glutaronitrile as 5 V electrolyte additive and its electrochemical performance for LiNi0.5Mn1.5O4. J Alloys Compd 698:207–214.  https://doi.org/10.1016/j.jallcom.2016.11.381 CrossRefGoogle Scholar
  28. 28.
    Lu YY, Xu SM, Shu J, Aladat WIA, Archer LA (2015) High voltage LIB cathodes enabled by salt-reinforced liquid electrolytes. Electrochem Commun 51:23–26.  https://doi.org/10.1016/j.elecom.2014.11.010 CrossRefGoogle Scholar
  29. 29.
    Hannink RJ, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83(3):461–487.  https://doi.org/10.1111/j.1151-2916.2000.tb01221.x CrossRefGoogle Scholar
  30. 30.
    Shi SK (2013) Synthesis method of lithium hexafluorozirconate and new application thereof. Faming Zhuanli Shenqing Gongkai Shuomingshu, CN103227326A (in Chinese)Google Scholar
  31. 31.
    Zhou L, Wu YN, Huang J, Fang X, Wang T, Liu WM, Wang Y, Jin Y, Tang XC (2017) Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with Li+-conductive Li2SiO3 for lithium ion batteries. J Alloys Compd 724:991–999.  https://doi.org/10.1016/j.jallcom.2017.05.328 CrossRefGoogle Scholar
  32. 32.
    Xu XL, Deng SX, Wang H, Liu JB, Yan H (2017) Research progress in improving the cycling stability of high voltage LiNi Mn O cathode in lithium-ion battery. Nano-Micro Lett 9(2):22–40.  https://doi.org/10.1007/s40820-016-0123-3
  33. 33.
    Tao S, Kong FJ, Wu CQ, Su XZ, Xiang T, Chen SM, Hou HH, Zhang L, Fang Y, Wang ZC, Chu WS, Qian B, Song L (2017) Nanoscale TiO2 membrane coating spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries. J Alloys Compd 705:413–419.  https://doi.org/10.1016/j.jallcom.2017.02.139 CrossRefGoogle Scholar
  34. 34.
    Dai XY, Zhou AJ, Xu J, Lu YT, Wang LP, Fan C, Li JZ (2016) Extending the high-voltage capacity of LiCoO2 cathode by direct coating of the composite electrode with Li2CO3 via magnetron sputtering. J Phys Chem C 120(1):422–430.  https://doi.org/10.1021/acs.jpcc.5b10677 CrossRefGoogle Scholar
  35. 35.
    Li WT, Lucht BL (2006) Lithium-ion batteries: thermal reactions of electrolyte with the surface of metal oxide cathode particles. J Electrochem Soc 153(8):A1617–A1625.  https://doi.org/10.1149/1.2210588 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Juntian Fan
    • 1
    • 2
  • Tao Dong
    • 1
  • Daliang Fang
    • 1
    • 2
  • Xuefeng Li
    • 1
  • Xian’en Mo
    • 1
  • Kaihua Wen
    • 1
    • 2
  • Shimou Chen
    • 1
  • Suojiang Zhang
    • 1
  1. 1.Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations