, Volume 24, Issue 10, pp 2983–2993 | Cite as

TiN synergetic with micro-/mesoporous carbon for enhanced performance lithium–sulfur batteries

  • Qiong Tang
  • Heqin LiEmail author
  • Yuanyuan Pan
  • Jing Zhang
  • Zhiwei Lin
  • Yong Chen
  • Xia Shu
  • Weiyu Qi
Original Paper


Porous carbon has high specific area and total pore volume but weak interaction with dissolved polysulfides. Conductive polar metal compound has strong chemical adsorption of polysulfides but difficult to attain high porosity to encapsulate sulfur series. Instead of efforts on the cathode, we prepared a composite made up of titanium nitride and three-dimensional micro-/mesoporous carbon by a facile and economic way. This composite was coated on the commercial Celgard separator as a polysulfide interceptor to enhance the performances of lithiumsulfur battery. The strategy exerts the synergetic merits of porosity, chemical adsorption, physical interception, and benign conductivity. The hierarchical carbon possesses a high specific surface area of 1571 m2/g and total pore volume of 1.56 cm3/g with the pore size centered at 1.27 and 5.30 nm. TiN can immobilize sulfur intermediates by strong chemical interaction. In addition, excellent electrical conductivity of TiN facilitates redox kinetics. The pure sulfur cathode with the modified separator delivers high initial capacity of 1130 mAh/g at 1 C (1 C = 1675 mAh/g) and retains 500 mAh/g after 400 cycles, demonstrating superior cycling stability, rate capabilities. Discharge-charge profiles, electrochemical impedance spectrum, and cyclic voltammetry curves of batteries were investigated to support the prominent electrochemistry of the material. Further analysis and observation on the modified separator disassembled from the coin cells after cycling were conducted to probe the evolution and reaction mechanism of the coating.


Lithium–sulfur battery TiN Porosity Polarity Adsorption 



The authors gratefully acknowledge the support of the “Strategic Priority Research Program” of the Chinese Academy of Science (No. XDA03040000), and the “Student’s Platform for Innovation and Entrepreneurship Training Program” of the Ministry of Education of China (No. 201710359071).


  1. 1.
    Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Edit 47(16):2930–2946CrossRefGoogle Scholar
  2. 2.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2011) Li-O2 and LiS batteries with high energy storage. Nat Mater 11(1):19–29CrossRefGoogle Scholar
  3. 3.
    Lochala J, Liu D, Wu B, Robinson C, Xiao J (2017) Research progress towards the practical applications of lithium sulfur (LiS) batteries. Acs Appl Mater Inter 9(29):24407–24421CrossRefGoogle Scholar
  4. 4.
    Manthiram A, Fu Y, Chung SH, Zu C, Su YS (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114(23):11751–11787CrossRefGoogle Scholar
  5. 5.
    Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032CrossRefGoogle Scholar
  6. 6.
    Wang J, Wu Y, Shi Z, Wu C (2014) Mesoporous carbon with large pore volume and high surface area prepared by a co-assembling route for lithium-sulfur batteries. Electrochim Acta 144:307–314CrossRefGoogle Scholar
  7. 7.
    Liang J, Sun ZH, Li F, Cheng HM (2016) Carbon materials for Li–S batteries: functional evolution and performance improvement. Energ Stor Mater 2:76–106Google Scholar
  8. 8.
    Raiß C, Peppler K, Janek J, Adelhelm P (2014) Pitfalls in the characterization of sulfur/carbon nanocomposite materials for lithium–sulfur batteries. Carbon 79(1):245–255CrossRefGoogle Scholar
  9. 9.
    Yang X, Zhang L, Zhang F, Huang Y, Che Y (2014) Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium–sulfur batteries. ACS Nano 8(5):5208–5215CrossRefGoogle Scholar
  10. 10.
    Saravanan K, Kalaiselvi N (2015) Nitrogen containing bio-carbon as a potential anode for lithium batteries. Carbon 81(1):43–53CrossRefGoogle Scholar
  11. 11.
    Zhang B, Qin X, Li GR, Gao XP (2015) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3(10):1531–1537CrossRefGoogle Scholar
  12. 12.
    Zhang Z, Li Q, Zhang K, Lai Y, Li J (2015) Micro-nano structure composite cathode material with high sulfur loading for advanced lithium–sulfur batteries. Electrochim Acta 152:53–60CrossRefGoogle Scholar
  13. 13.
    Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134(45):18510–18513CrossRefGoogle Scholar
  14. 14.
    Balach J, Jaumann T, Klose M, Oswald S, Eckert J, Giebeler L (2015) Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries. Adv Funct Mater 25(33):5285–5291CrossRefGoogle Scholar
  15. 15.
    Park MS, Bo OJ, Kim TJ, Kim S, Kim KJ, Yu JS (2014) Disordered mesoporous carbon as polysulfide reservoir for improved cyclic performance of lithium–sulfur batteries. Carbon 68(3):265–272CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Zhao Y, Konarov A, Li Z, Chen P (2015) Effect of mesoporous carbon microtube prepared by carbonizing the poplar catkin on sulfur cathode performance in li/s batteries. J Alloy Compd 619:298–302CrossRefGoogle Scholar
  17. 17.
    Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z (2011) Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J Mater Chem 21(41):16603–16610CrossRefGoogle Scholar
  18. 18.
    Qu Y, Zhang Z, Zhang X, Ren G, Wang X, Lai Y (2014) Synthesis of hierarchical porous honeycomb carbon for lithium-sulfur battery cathode with high rate capability and long cycling stability. Electrochima Acta 137(8):439–446CrossRefGoogle Scholar
  19. 19.
    Yu LH, Brun N, Sakaushi K, Eckert J, Titirici MM (2013) Hydrothermal nanocasting: synthesis of hierarchically porous carbon monoliths and their application in lithium–sulfur batteries. Carbon 61(51):245–253CrossRefGoogle Scholar
  20. 20.
    Wang F, Song R, Song H, Chen X, Zhou J, Ma Z (2015) Simple synthesis of novel hierarchical porous carbon microspheres and their application to rechargeable lithium-ion batteries. Carbon 81(1):314–321CrossRefGoogle Scholar
  21. 21.
    Evers S, Yim T, Nazar LF (2012) Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the li–s battery. J Phys Chem C 116(37):19653–19658CrossRefGoogle Scholar
  22. 22.
    Liang G, Wu J, Qin X, Liu M, Li Q, He YB (2016) Ultrafine TiO2 decorated carbon nanofibers as multi-functional interlayer for high performance lithium-sulfur battery. Acs Appl Mater Inter 8(35):23105–23113CrossRefGoogle Scholar
  23. 23.
    Chao L, Zhu H, Wei L, Fei S, Fan X, Dai J (2017) Atomic-layer-deposition functionalized carbonized mesoporous wood fiber for high sulfur loading lithium sulfur batteries. Acs Appl Mater Inter 9(17):14801–14807CrossRefGoogle Scholar
  24. 24.
    Jiangxuan S, Gordin ML, Terrence X, Shuru C, Zhaoxin Y, Hiesang S (2015) Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew Chem Int Edit 54(14):4325–4329CrossRefGoogle Scholar
  25. 25.
    Ponraj R, Kannan AG, Ahn JH, Kim DW (2016) Improvement of cycling performance of lithium-sulfur batteries by using magnesium oxide as a functional additive for trapping lithium polysulfide. Acs Appl Mater Inter 8(6):4000–4006CrossRefGoogle Scholar
  26. 26.
    Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF (2015) A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun 6:5682CrossRefGoogle Scholar
  27. 27.
    Peng HJ, Zhang Q (2015) Designing host materials for sulfur cathodes: from physical confinement to surface chemistry. Angew Chem Int Edit 54(38):11018–11020CrossRefGoogle Scholar
  28. 28.
    Pang Q, Kundu D, Cuisinier M, Nazar LF (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun 5:4759CrossRefGoogle Scholar
  29. 29.
    Tao X, Wang J, Ying Z, Cai Q, Zheng G, Gan Y (2014) Strong sulfur binding with conducting magnéli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries. Nano Lett 14(9):5288–5294CrossRefGoogle Scholar
  30. 30.
    Li X, Lu Y, Hou Z, Zhang W, Zhu Y, Qian Y (2016) SnS2-compared to SnO2-stabilized S/C composites toward high-performance lithium sulfur batteries. Acs Appl Mater Inter 8(30):19550–19557CrossRefGoogle Scholar
  31. 31.
    Yuan Z, Peng HJ, Hou TZ, Huang JQ, Chen CM, Wang DW (2016) Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett 16(1):519–527CrossRefGoogle Scholar
  32. 32.
    Peng HJ, Zhang G, Chen X, Zhang ZW, Xu WT, Huang JQ (2016) Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew Chem Int Edit 128(42):13184–13189CrossRefGoogle Scholar
  33. 33.
    Milosv I, Strehblow HH, Navinsek B, Metikos-Hukovic M (1995) Electrochemical and thermal oxidation of tin coatings studied by XPS. Surf Interface Anal 23(7–8):529–539CrossRefGoogle Scholar
  34. 34.
    Wen ZH, Cui SM, Pu HH, Mao S, Yu K, Feng XL, Chen JH (2011) Metal nitride/graphene nanohybrids: general synthesisand multifunctional titanium nitride/graphene electrocatalyst. Adv Mater 23(45):5445–5450CrossRefGoogle Scholar
  35. 35.
    Kohandehghan A, Kalisvaart P, Cui K, Kupsta M, Memarzadeh E, Mitlin D (2013) Silicon nanowire lithium-ion battery anodes with ald deposited tin coatings demonstrate a major improvement in cycling performance. J Mater Chem A 1(41):12850–12861CrossRefGoogle Scholar
  36. 36.
    Cui Z, Zu C, Zhou W, Manthiram A, Goodenough JB (2016) Mesoporous titanium nitride-enabled highly stable lithium–sulfur batteries. Adv Mater 28(32):6926–6931CrossRefGoogle Scholar
  37. 37.
    Hao Z, Yuan L, Chen C, Xiang J, Li Y, Huang Z (2016) TiN as a simple and efficient polysulfide immobilizer for lithium-sulfur batteries. J Mater Chem A 4(45):17711–17717CrossRefGoogle Scholar
  38. 38.
    Chen Z, Du XL, He JB, Li F, Wang Y, Li YL, Li B, Xin S (2017) Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium–sulfur batteries. Acs Appl Mater Inter 9(39):33855–33862CrossRefGoogle Scholar
  39. 39.
    Xu DW, Xin S, You Y et al (2016) Built-in carbon nanotube network inside a biomass-derived hierarchically porous carbon to enhance the performance of the sulfur cathode in a Li–S battery. Chem Aust 2(7):712–718Google Scholar
  40. 40.
    Du XL, You Y, Yan Y et al (2016) Conductive carbon network inside a sulfur-impregnated carbon sponge: a bioinspired high-performance cathode for Li–S battery. Acs Appl Mater Inter 8(34):22261–22269CrossRefGoogle Scholar
  41. 41.
    Xin S, You Y, Li HQ, Zhou WD, Li YT, Xue LG, Cong HP (2016) Graphene sandwiched by sulfur-confined mesoporous carbon nanosheets: a kinetically stable cathode for Li–S batteries. Acs Appl Mater Inter 8(49):33704–33711CrossRefGoogle Scholar
  42. 42.
    You Y, Zeng W, Yin YX, Zhang J, Yang CP, Zhu Y, Guo YG (2015) Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li-S batterie. J Mater Chem A 3(9):4799–4802CrossRefGoogle Scholar
  43. 43.
    Huang JQ, Zhang Q, Wei F (2015) Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects. Energy Storage Mater 1:127–145CrossRefGoogle Scholar
  44. 44.
    Xu Q, Hu GC, Bi HL, Xiang HF (2015) A trilayer carbon nanotube/Al2O3/polypropylene separator for lithium–sulfur batteries. Ionics 21(4):981–986CrossRefGoogle Scholar
  45. 45.
    Peng HJ, Zhang ZW, Huang JQ, Zhang G, Xie J, Xu WT, Shi JL, Chen X, Cheng XB, Zhang Q (2016) A cooperative interface for highly efficient lithium-sulfur batteries. Adv Mater 28(43):9551–9558CrossRefGoogle Scholar
  46. 46.
    Kong L, Peng HJ, Huang JQ, Zhu W, Zhang G, Zhang ZW, Zhai PY, Sun P, Xie J, Zhang Q (2017) Beaver-dam-like membrane: a robust and sulphifilic MgBO2(OH)/CNT/PP nest separator in Li–S batteries. Energy Storage Mater 8:153–160CrossRefGoogle Scholar
  47. 47.
    Du Z, Guo C, Wang L et al (2017) Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries. Acs Appl Mater Inter 9(50):43696–43703CrossRefGoogle Scholar
  48. 48.
    Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49(6):705–814CrossRefGoogle Scholar
  49. 49.
    Li Y, Wang J, Li X, Liu J, Geng D, Yang J (2011) Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochem Commun 13(7):668–672CrossRefGoogle Scholar
  50. 50.
    Zhu YQ, Zhang L, Chen XY, Xiao ZH, Zhang ZJ (2015) Notable improvement of capacitive performance of highly nanoporouscarbon materials simply by a redox additive electrolyte of p-nitroaniline. J Power Sources 299:629–639CrossRefGoogle Scholar
  51. 51.
    Tran C, Yang XQ, Qu D (2010) Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity. J Power Sources 195(7):2057–2063CrossRefGoogle Scholar
  52. 52.
    Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231(2):153–162CrossRefGoogle Scholar
  53. 53.
    Hagen M, Fanz P, Tübke J (2014) Cell energy density and electrolyte/sulfur ratio in Li–S cells. J Power Sources 264(264):30–34CrossRefGoogle Scholar
  54. 54.
    Zhang Z, Wang G, Lai Y, Li J (2016) A freestanding hollow carbon nanofiber/reduced graphene oxide interlayer for high-performance lithium–sulfur batteries. J Alloy Compound 663:501–506CrossRefGoogle Scholar
  55. 55.
    Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable LiS batteries. Adv Mater 23(47):5641–5644CrossRefGoogle Scholar
  56. 56.
    Buzio R, Gerbi A, Uttiya S, Bernini C, Del Rio Castillo AE, Palazon F (2017) Ultralow friction of ink-jet printed grapheme flakes. Nano 9:76112–77624Google Scholar
  57. 57.
    Zhou T, Lv W, Li J, Zhou G, Zhao Y, Fan S (2017) Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ Sci 10(7):1694–1703CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qiong Tang
    • 1
    • 2
  • Heqin Li
    • 1
    Email author
  • Yuanyuan Pan
    • 1
  • Jing Zhang
    • 1
    • 2
  • Zhiwei Lin
    • 1
  • Yong Chen
    • 1
  • Xia Shu
    • 1
  • Weiyu Qi
    • 1
  1. 1.School of Materials Science and EngineeringHefei University of TechnologyHefeiChina
  2. 2.School of Electronic Science and Applied PhysicsHefei University of TechnologyHefeiChina

Personalised recommendations