Advertisement

Ionics

, Volume 24, Issue 10, pp 3259–3270 | Cite as

Characterization of biopolymer pectin with lithium chloride and its applications to electrochemical devices

  • P. Perumal
  • P. Christopher Selvin
  • S. Selvasekarapandian
Original Paper

Abstract

Natural anionic polysaccharide pectin-based flexible electrolyte with different compositions of LiCl has been prepared by solution casting technique. The prepared membranes have been characterized by X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and AC complex impedance analysis. The pectin/LiCl (50:50 M.wt%) complex exhibits high ionic conductivity in the order of 2.08 × 10−3 S cm−1. The temperature-dependent ionic conductivity obeys the Arrhenius behavior. The best performing membrane has been used to construct the primary lithium ion battery. The open-circuit voltage of the constructed primary lithium ion battery is found to be 1.93 V.

Keywords

Pectin Lithium chloride Amorphous nature Conductivity Battery 

References

  1. 1.
    Manuel Stephan A, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964CrossRefGoogle Scholar
  2. 2.
    Kumar M, Tiwari T, Srivastava N (2012) Electrical transport behavior of biopolymer electrolytes system. Carbohyd Polym 88(1):54–60CrossRefGoogle Scholar
  3. 3.
    Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Premalatha M (2016) Preparation and characterization of cellulose acetate and lithium nitrate for advanced electrochemical devices. Ionics 23:2677–2684Google Scholar
  4. 4.
    Vijayalekshmi V, Khastgir D (2017) Eco-friendly methane sulfonic acid and sodium salt of dodecyl benzene sulfonic acid doped cross-linked chitosan based green polymer electrolyte membranes for fuel cell applications. J Membr Sci 523:45–59CrossRefGoogle Scholar
  5. 5.
    Selvakumar M, Bhat DK (2008) LiClO4 doped cellulose acetate as biodegradable polymer electrolyte for supercapacitors. J Appl Polym Sci 110:594–602CrossRefGoogle Scholar
  6. 6.
    Shuhaimi NEA, Alias NA, Majid SR, Arof AK (2008) Electrical double layer capacitor with proton conducting κ-carrageenan chitosan electrolytes. Funct Mater Lett 1:195–201CrossRefGoogle Scholar
  7. 7.
    Naqash F, Masoodi FA, Rather SA, Wani SM, Gani A (2017) Emerging concepts in the nutraceutical and functional properties of pectin—a review. Carbohyd Polym 168:227–239CrossRefGoogle Scholar
  8. 8.
    Mobarak NN, Jumaah FN, Ghani MA, Abdullah MP, Ahmad A (2015) Carboxymethyl carrageenan based biopolymer electrolytes. Electrochim Acta 175:224–231CrossRefGoogle Scholar
  9. 9.
    Pasini Cabello SD, Ochoa NA, Takara EA, Molla S, Compan V (2017) Influence of pectin as a green polymer electrolyte on the transport properties of chitosan-pectin membranes. Carbohyd Polym 157:1759–1768CrossRefGoogle Scholar
  10. 10.
    Yamada M, Ogino T (2015) Anhydrous proton conductor consisting of pectin-inorganic composite material. J Appl Polym Sci 132:42433–42439CrossRefGoogle Scholar
  11. 11.
    Chandra MVL, Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S (2016) Study of PVAc-PMMA-LiCl polymer blend electrolyte and the effect of plasticizer ethylene carbonate and nanofiller titania on PVAc-PMMA-LiCl polymer blend electrolyte. J Polym Eng 37:1–15Google Scholar
  12. 12.
    Anbazhakan K, Selvasekarapandiyan S, Monisha S, Premalatha M, Neelaveni A (2017) Lithium ion conductivity and dielectric properties of P(VdCl-co-AN-co-MMA)-LiCl-EC triblock co-polymer electrolytes. Ionics 23:2663–2668CrossRefGoogle Scholar
  13. 13.
    Andrate JR, Raphael E, Pawlicka A (2009) Plasticized pectin-based gel electrolytes. Electrochim Acta 54:6479–6483CrossRefGoogle Scholar
  14. 14.
    Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly(vinly alcohol) films. Polymer 37(8):1371–1376CrossRefGoogle Scholar
  15. 15.
    Ramesh S, Shanti R, Morris E (2012) Plasticizing effect of 1-allyl-3-methlyimidazolium chloride in cellulose acetate based polymer electrolytes. Carbohyd Polym 87:2624–2629CrossRefGoogle Scholar
  16. 16.
    Ma XF, Yu JG, He K (2006) Thermoplastic starch plasticized by glycerol as solid polymer electrolytes. Macromol Mater Eng 291:1407–1413CrossRefGoogle Scholar
  17. 17.
    Gnanasambandam R, Proctor A (2000) Determination of pectin degree of esterification by diffuse reflectance FTIR. Food Chem 68:327–332CrossRefGoogle Scholar
  18. 18.
    Sutar PB, Mishra RK, Pal K, Banthia AK (2008) Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system. J Mater Sci Mater Med 19:2247–2253CrossRefGoogle Scholar
  19. 19.
    Macial VBV, Yoshida CMP, Franco TT (2015) Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohyd Polym 132:537–545CrossRefGoogle Scholar
  20. 20.
    Vijaya N, Selvasekarapandian S, Sornalatha M, Sujithra KS, Monisha S (2016) Proton-conducting biopolymer electrolytes based on pectin doped with NH4X (X=Cl, Br). Ionics 23:2799–2808CrossRefGoogle Scholar
  21. 21.
    Mishra RK, Sutar PB, Singhal JP, Banthia AK (2009) Graft copolymerization of pectin with polyacrylamide. Polym-Plast Technol Eng 46:1079–1085CrossRefGoogle Scholar
  22. 22.
    Chaichi M, Hashemi M, Badii F, Mohammadi A (2017) Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohy Polym 157:167–175CrossRefGoogle Scholar
  23. 23.
    Premalatha M, Vijaya N, Selvasekarapandian S, Selvalakshmi S (2016) Characterization of blend polymer PVA-PVP complexed with ammonium thiocyanate. Ionics 22:1299–1310CrossRefGoogle Scholar
  24. 24.
    Liew CW, Ramesh S, Ramesh K, Arof AK (2012) Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J Solid State Electrochem 16:1869–1875CrossRefGoogle Scholar
  25. 25.
    Karthikeyan S, Sikkanthar S, Selvasekarapandian S, Arunkumar D, Nithya H, Kawamura J (2016) Structural, electrical and electrochemical properties of polyacrylonitrile-ammonium hexafluorophosphate polymer electrolyte system. J Polym Res 23:51–60CrossRefGoogle Scholar
  26. 26.
    Boukamp BA (1986) A non-linear lease square fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20:31–44CrossRefGoogle Scholar
  27. 27.
    Boopothi G, Pugalendhi S, Selvasekarapandian S, Premalatha M, Monisha S, Aristatil G (2016) Development of proton conducting biopolymer membrane based on agar-agar for fuel cell. Ionics 23:2781–2790CrossRefGoogle Scholar
  28. 28.
    Vieria DF, Avellanda CO, Pawlicka A (2007) Conductivity study of a gelatin-based polymer electrolyte. Electrochim Acta 53:1404–1408CrossRefGoogle Scholar
  29. 29.
    Subba Reddy CV, Sharma AK, NarasimhaRao VVRJ (2003) Conductivity and discharge characteristics of polyblend (PVP + PVA + KIO3) electrolyte. J Power Sources 114:338–345CrossRefGoogle Scholar
  30. 30.
    Kumara R, Subraminan A, Sundaram NTK, Kumar GV, Baskaran I (2007) Effect of MgO nanoparticles on ionic condusctivity and electrochemical properties of nanocomposite polymer electrolyte. J Membr Sci 300:104–110CrossRefGoogle Scholar
  31. 31.
    Sikkanthar S, Karthikeyan S, Selvasekarapandian S, VinothPandi D, Nithya S, Sanjeeviraja C (2014) Electrical conductivity characterization of polyacrylonitrile-ammonium bromide polymer electrolyte system. J Solid State Electrochem 19:987–999CrossRefGoogle Scholar
  32. 32.
    Nithya S, Selvasekarapandian S, Karthikeyan S, Inbavalli D, Sikkanthar S, Sanjeeviraja C (2014) AC impedance studies on proton-conducting PAN:NH4SCN polymer electrolytes. Ionics 20:1391–1398CrossRefGoogle Scholar
  33. 33.
    Fernandez ME, Diosa JE, Vargas RA (2008) Impedance spectroscopy studies of the polymer electrolyte based on poly(vinyl alcohol)-(NaI+4AgI)-H2O. Microelectron J 39:1344–1346CrossRefGoogle Scholar
  34. 34.
    JooGon Kim, Byungrak Son, Santanu Mukherjee, Nicholas Schuppert, Alex Bates, Osung Kwon, Moon Jong Choi, Hyun Yeol Chung and Sam Park (2015) A review of lithium and non-lithium based solid state batteries 282:299-322SGoogle Scholar
  35. 35.
    Wagner JB, Wagner C (1957) Electrical conductivity measurements on cuprous halides. J Chem Phys 26:1597–1601CrossRefGoogle Scholar
  36. 36.
    Nik Aziz NA, Idris NK, Isa MIN (2010) Proton conducting polymer electrolytes of methylcellulose doped ammonium fluoride: conductivity and ionic transport studies. J Phys Sci 5(6):748–752Google Scholar
  37. 37.
    Winnie T, Arof AK (2006) Transport properties of hexanoyl chitosan-based gel electrolyte. Ionics 12:149–152CrossRefGoogle Scholar
  38. 38.
    Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, Premalatha M, VinothPandi D (2017) Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohyd Polym 157:38–47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. Perumal
    • 1
  • P. Christopher Selvin
    • 1
  • S. Selvasekarapandian
    • 1
    • 2
  1. 1.Solid State Ionics and Luminescence Laboratory, Department of PhysicsBharathiar UniversityCoimbatoreIndia
  2. 2.Materials Research CenterCoimbatoreIndia

Personalised recommendations