, Volume 24, Issue 10, pp 3221–3226 | Cite as

Electrochemical characteristics of TiO2 in NaCl-KCl-NaF molten salt system

  • Jinglong Liang
  • Hui LiEmail author
  • Dongxing Huo
  • Hongyan Yan
  • Ramana G. Reddy
  • Liguang Wang
  • Lanqing Wang
Original Paper


Cyclic voltammetry and square wave voltammetry were used to investigate reduction mechanism of Ti(IV) on the iron electrode surface in NaCl-KCl-NaF molten salt system. It indicated that the Ti(IV) ions were reduced to titanium metal by three steps, Ti(IV) → Ti(III) → Ti(II) → Ti, and the reduction process was irreversible process controlled by diffusion. The nucleation mechanism of titanium ions on pure iron electrode surface was determined to be an instantaneous nucleation process.


TiO2 Molten salt Electrochemical behavior 


Funding information

The study is financially supported by the National Natural Science Foundation of China (Project Nos. 51474093, 51401075), the Natural Science Foundation of Hebei Province (Project No. E2016209163), and the High School Science and Technology Research Project of Hebei Province (Project No. BJ2017050).


  1. 1.
    Xu CY, Hua YX (2015) Electrochemical preparation of titanium and its alloy in ionic liquid. In: Handy S (ed) Ionic liquids—current state of the art. InTech, London, p 481–503Google Scholar
  2. 2.
    Liu R, Hui SX, Ye WJ et al (2013) Dynamic stress–strain properties of Ti–Al–V titanium alloys with various element contents. Rare Metals 32:555–559CrossRefGoogle Scholar
  3. 3.
    Li J, Li B (2007) Electrochemical reduction and electrocrystallization process of Ti (IV) in the LiF-NaF-KF-K2TiF6 molten salt. Rare Metal Mater Eng 36:15–19Google Scholar
  4. 4.
    Haarberg GM, Kjos OS, Martinez AM et al (2010) Electrochemical behavior of dissolved titanium species in molten salts. ECS T 33:167–173CrossRefGoogle Scholar
  5. 5.
    Bin W, Liu KR, Chen JS (2011) Reaction mechanism of preparation of titanium by electro-deoxidation in molten salt. Trans Nonferrous Metal Soc 21:2327–2331CrossRefGoogle Scholar
  6. 6.
    Song Y, Jiao S, Hu L et al (2016) The cathodic behavior of Ti (III) ion in a NaCl-2CsCl melt. Metall Mater Trans B Process Metall Mater Process Sci 47:804–810CrossRefGoogle Scholar
  7. 7.
    Malyshev V, Shakhnin D (2014) Titanium coating on carbon steel: direct-current and impulsive electro-deposition. Physicomechanical and chemical properties. Mater Sci 50:80–91CrossRefGoogle Scholar
  8. 8.
    Li J, Zhang XY, Liu YB et al (2013) Electrochemical behavior of tungsten in (NaCl–KCl–NaF–WO3) molten salt. Rare Metals 32:512–517CrossRefGoogle Scholar
  9. 9.
    Zhang M, Chen L, Han W et al (2012) Electrochemical behavior of Pb (II) in LiCl-KCl-MgCl2-PbCl2 melts on Mo electrode. Trans Nonferrous Metal Soc 22:711–716CrossRefGoogle Scholar
  10. 10.
    Qian J, Tian Z (2012) Electrodeposition of iron platinum in NaCl-KCl molten salt. Trans Nonferrous Metal Soc 22:2855–2862CrossRefGoogle Scholar
  11. 11.
    Li M, Li W, Han W et al (2014) Electrochemical behavior of Pr( III) in the LiCl-KCl melt on a Ni electrode. Chem J Chin Univ 35:2662–2667Google Scholar
  12. 12.
    Chen Z, Zhang ML, Han W et al (2008) Electrodeposition of Li and electrochemical formation of Mg–Li alloys from the eutectic LiCl–KCl. J Alloys Compd 459:209–214CrossRefGoogle Scholar
  13. 13.
    Hu Y, Wang X, Xiao J et al (2013) Electrochemical behavior of silicon (IV) ion in BaF2-CaF2-SiO2 melts at 1573K. J Electrochem Soc 160:D81–D84CrossRefGoogle Scholar
  14. 14.
    Liao CF, Fang MZ, Wang X et al (2015) Square wave voltammetry analysis of NaCl-KCl-Na2WO4 communion system. Nonferrous Metal Sci Eng 6:6–9Google Scholar
  15. 15.
    Xue Y, Wang Q, Yan YD et al (2013) Direct electrochemical reduction of Sm2O3 and formation of Al-Sm alloys in LiCl-KCl-AlCl3 melts. Chinese J Inorg Chem 29:1947–1951Google Scholar
  16. 16.
    Hu HL (2007) Electrochemical measurement. National Defense Industry Press, BeijingGoogle Scholar
  17. 17.
    Tang H, Yan YD, Zhang ML et al (2013) Electrochemistry of MgCl2 in LiCl-KCl eutectic melts. Acta Phys-Chim Sin 29:1698–1704Google Scholar
  18. 18.
    Hamel C, Chamelot P, Laplace A, Walle E, Dugne O, Taxil P (2007) Reduction process of uranium(IV) and uranium(III) in molten fluorides. Electrochim Acta 52:3995–4003CrossRefGoogle Scholar
  19. 19.
    Gao P, Zhu YM (2013) Electrochemical basic tutorial. Chemical Industry Press, BeijingGoogle Scholar
  20. 20.
    Sun X, Lu G, Fan S (2014) Electrochemical mechanism of electrolysis co-deposition of Mg-Sr alloy in molten salt. Trans Nonferrous Metal Soc 24:1629–1634CrossRefGoogle Scholar
  21. 21.
    Sun Y, Zhang M, Han W et al (2013) Electrochemical formation of Al-Li alloys by co-deposition of Al and Li from LiCl-KCl-AlF3 melts at 853 K. Chem Res Chin Univ 29:324–328CrossRefGoogle Scholar
  22. 22.
    Zhang JQ (2010) Electrochemical measurement technology. Chemical Industry Press, BeijingGoogle Scholar
  23. 23.
    Allongue P, Souteyrand E (1990) Metal electrodeposition on semiconductors: part I. Comparison with glassy carbon in the case of platinum deposition. J Electroanal Chem Interfacial Electrochem 286:217–237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jinglong Liang
    • 1
  • Hui Li
    • 1
    • 2
    Email author
  • Dongxing Huo
    • 1
  • Hongyan Yan
    • 1
  • Ramana G. Reddy
    • 3
  • Liguang Wang
    • 1
  • Lanqing Wang
    • 1
  1. 1.Key Laboratory of Ministry of Education for Modern Metallurgy Technology, College of Metallurgy and EnergyNorth China University of Science and TechnologyTangshanChina
  2. 2.School of Metallurgy and EnergyNorth China University of Science and TechnologyTangshanChina
  3. 3.Department of Metallurgical and Materials EngineeringUniversity of AlabamaTuscaloosaUSA

Personalised recommendations