Advertisement

Ionics

, Volume 24, Issue 10, pp 2995–3004 | Cite as

Investigation of the synergetic effects of LiBF4 and LiODFB as wide-temperature electrolyte salts in lithium-ion batteries

  • Lijuan Zhang
  • Yanxia Sun
  • Yuan Zhou
  • Chunxi Hai
  • Shuqing Hu
  • Jinbo Zeng
  • Yue Shen
  • Shengde Dong
  • Guicai Qi
  • Faqiang Li
Original Paper
  • 125 Downloads

Abstract

Herein, we present the use of lithium tetrafluoroborate (LiBF4) as an electrolyte salt for wide-temperature electrolytes in lithium-ion batteries. The research focused on the application of blend salts to exhibit their synergistic effect especially in a wide temperature range. In the study, LiCoO2 was employed as the cathode material; LiBF4 and lithium difluoro(oxalate)borate (LiODFB) were added to an electrolyte consisting of ethylene carbonate (EC), propylene carbonate (PC), and ethyl methyl carbonate (EMC). The electrochemical performance of the resulting electrolyte was evaluated through various analytical techniques. Analysis of the electrical conductivity showed the relationship among solution conductivity, the electrolyte composition, and temperature. Cyclic voltammetry (CV), charge-discharge cycling, and AC impedance measurements were used to investigate the capacity and cycling stability of the LiCoO2 cathode in different electrolyte systems and at different temperatures. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were applied to analyze the surface properties of the LiCoO2 cathode after cycling. The results indicated that the addition of a small amount of LiODFB into the LiBF4-based electrolyte system (LiBF4/LiODFB of 8:2) may enhance the electrochemical performance of the LiCoO2 cell over a relatively wide temperature range and improve the cyclability of the LiCoO2 cell at 60 °C.

Keywords

Lithium-ion batteries Lithium tetrafluoroborate Lithium difluoro(oxalate)borate Wide temperature Blend salts 

Notes

Acknowledgements

This work is supported by the Joint Funds of the National Natural Science Foundation of China (Nos. U1407105 and U1407106), the Applied Basic Research Program of Qinghai Province (No.2015-ZJ-740), and Qinghai Provincial Thousand Talents Program for High-level Innovative Professionals.

References

  1. 1.
    Goodenough JB, Kim Y (2011) Challenges for rechargeable batteries. J Power Sources 196(16):6688–6694.  https://doi.org/10.1016/j.jpowsour.2010.11.074 CrossRefGoogle Scholar
  2. 2.
    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430.  https://doi.org/10.1016/j.jpowsour.2009.11.048 CrossRefGoogle Scholar
  3. 3.
    Liu H, Miao C, Meng Y, He Y-B, Xu Q, Zhang X, Tang Z (2014) Optimized synthesis of nano-sized LiFePO4/C particles with excellent rate capability for lithium ion batteries. Electrochim Acta 130:322–328.  https://doi.org/10.1016/j.electacta.2014.03.034 CrossRefGoogle Scholar
  4. 4.
    Li S, Li X, Liu J, Shang Z, Cui X (2014) A low-temperature electrolyte for lithium-ion batteries. Ionics 21(4):901–907CrossRefGoogle Scholar
  5. 5.
    Azeez F, Fedkiw PS (2010) Conductivity of libob-based electrolyte for lithium-ion batteries. J Power Sources 195(22):7627–7633.  https://doi.org/10.1016/j.jpowsour.2010.06.021 CrossRefGoogle Scholar
  6. 6.
    Li S, Zhao W, Zhou Z, Cui X, Shang Z, Liu H, Zhang D (2014) Studies on electrochemical performances of novel electrolytes for wide temperature range lithium ion batteries. Appl Mater Interfaces 6(7):4920–4926.  https://doi.org/10.1021/am405973x CrossRefGoogle Scholar
  7. 7.
    Lai Y, Peng B, Zhang Z, Li J (2014) A wide operating temperature range electrolyte containing lithium salts mixture and a co-solvent for the LiFePO4 cathode. J Electrochem Soc 161(6):A875–A879.  https://doi.org/10.1149/2.023406jes CrossRefGoogle Scholar
  8. 8.
    Zhang Z, Chen X, Li F, Lai Y, Li J, Liu P, Wang X (2010) LiPF6 and lithium oxalyldifluoroborate blend salts electrolyte for LiFePO4/artificial graphite lithium-ion cells. J Power Sources 195(21):7397–7402CrossRefGoogle Scholar
  9. 9.
    Zhou H, Xiao K, Li J (2016) Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material. J Power Sources 302:274–282CrossRefGoogle Scholar
  10. 10.
    Wang DY, Xiao A, Wells L, Dahn JR (2015) Effect of mixtures of lithium hexafluorophosphate (LiPF6) and lithium bis(fluorosulfonyl)imide (LiFSI) as salts in li[Ni1/3Mn1/3Co1/3]O2/graphite pouch cells. J Electrochem Soc 162(1):A169–A175CrossRefGoogle Scholar
  11. 11.
    Zhang SS, Xu K, Jow TR (2002) Study of LiBF4 as an electrolyte salt for a li-ion battery. J Electrochem Soc 149(5):A586.  https://doi.org/10.1149/1.1466857 CrossRefGoogle Scholar
  12. 12.
    Xu K, Zhang S, Jow TR, Xu W, Angell CA (2002) LiBOB as salt for lithium-ion batteries: a possible solution for high temperature operation. Electrochem Solid-State Lett 5(1):A26.  https://doi.org/10.1149/1.1426042 CrossRefGoogle Scholar
  13. 13.
    Agubra VA, Fergus JW (2014) The formation and stability of the solid electrolyte interface on the graphite anode. J Power Sources 268:153–162.  https://doi.org/10.1016/j.jpowsour.2014.06.024 CrossRefGoogle Scholar
  14. 14.
    Zhang SS (2007) Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte. J Power Sources 163(2):713–718.  https://doi.org/10.1016/j.jpowsour.2006.09.040 CrossRefGoogle Scholar
  15. 15.
    Zygadło-Monikowska E, Florjańczyk Z, Kubisa P, Biedroń T, Tomaszewska A, Ostrowska J, Langwald N (2010) Mixture of LiBF4 and lithium difluoro(oxalato)borate for application as a new electrolyte for lithium-ion batteries. J Power Sources 195(18):6202–6206CrossRefGoogle Scholar
  16. 16.
    Lu Z, Yang L, Guo Y (2006) Thermal behavior and decomposition kinetics of six electrolyte salts by thermal analysis. J Power Sources 156(2):555–559.  https://doi.org/10.1016/j.jpowsour.2005.05.085 CrossRefGoogle Scholar
  17. 17.
    Aravindan V, Gnanaraj J, Madhavi S, Liu HK (2011) Lithium-ion conducting electrolyte salts for lithium batteries. Chemistry 17(51):14326–14346.  https://doi.org/10.1002/chem.201101486 CrossRefPubMedGoogle Scholar
  18. 18.
    Fu MH, Huang KL, Liu SQ, Liu JS, Li YK (2010) Lithium difluoro(oxalato)borate/ethylene carbonate+propylene carbonate+ethyl(methyl) carbonate electrolyte for LiMn2O4 cathode. J Power Sources 195(3):862–866.  https://doi.org/10.1016/j.jpowsour.2009.08.042 CrossRefGoogle Scholar
  19. 19.
    Li J, Xie K, Lai Y, Za Z, Li F, Hao X, Chen X, Liu Y (2010) Lithium oxalyldifluoroborate/carbonate electrolytes for LiFePO4/artificial graphite lithium-ion cells. J Power Sources 195(16):5344–5350.  https://doi.org/10.1016/j.jpowsour.2010.03.038 CrossRefGoogle Scholar
  20. 20.
    Xu MQ, Zhou L, Hao LS, Xing LD, Li WS, Lucht BL (2011) Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries. J Power Sources 196(16):6794–6801.  https://doi.org/10.1016/j.jpowsour.2010.10.050 CrossRefGoogle Scholar
  21. 21.
    Gao HQ, Zhang ZA, Lai YQ, Jie L, Liu YX (2008) Structure characterization and electrochemical properties of new lithium salt LiODFB for electrolyte of lithium ion batteries. J Cent South Univ 15(6):830–834.  https://doi.org/10.1007/s11771-008-0153-1 CrossRefGoogle Scholar
  22. 22.
    Liao L, Cheng X, Ma Y, Zuo P, Fang W, Yin G, Gao Y (2013) Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode. Electrochim Acta 87(1):466–472CrossRefGoogle Scholar
  23. 23.
    Bordes A, Eom K, Fuller TF (2014) The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of li-ion full-cell employing nano Si–graphene composite anodes. J Power Sources 257:163–169CrossRefGoogle Scholar
  24. 24.
    Zugmann S, Moosbauer D, Amereller M, Schreiner C, Wudy F, Schmitz R, Schmitz R, Isken P, Dippel C, Müller R, Kunze M, Lex-Balducci A, Winter M, Gores HJ (2011) Electrochemical characterization of electrolytes for lithium-ion batteries based on lithium difluoromono(oxalato)borate. J Power Sources 196(3):1417–1424.  https://doi.org/10.1016/j.jpowsour.2010.08.023 CrossRefGoogle Scholar
  25. 25.
    Ding MS, Jow TR (2004) How conductivities and viscosities of PC-DEC and PC-EC solutions of LiBF4, LiPF6, LiBOB, Et4NBF4, and Et4NPF6 differ and why. J Electrochem Soc 151(12):A2007–A2015.  https://doi.org/10.1149/1.1809575 CrossRefGoogle Scholar
  26. 26.
    Shui Zhang S (2006) An unique lithium salt for the improved electrolyte of li-ion battery. Electrochem Commun 8(9):1423–1428.  https://doi.org/10.1016/j.elecom.2006.06.016 CrossRefGoogle Scholar
  27. 27.
    Li F, Gong Y, Jia G, Wang Q, Peng Z, Fan W, Bai B (2015) A novel dual-salts of LiTFSI and LiODFB in LiFePO4-based batteries for suppressing aluminum corrosion and improving cycling stability. J Power Sources 295:47–54CrossRefGoogle Scholar
  28. 28.
    Schedlbauer T, Rodehorst UC, Schreiner C, Gores HJ, Winter M (2013) Blends of lithium bis(oxalato)borate and lithium tetrafluoroborate: useful substitutes for lithium difluoro(oxalato)borate in electrolytes for lithium metal based secondary batteries? Electrochim Acta 107(3):26–32.  https://doi.org/10.1016/j.electacta.2013.05.130 CrossRefGoogle Scholar
  29. 29.
    Egashira M, Sawada N, Ueda K, Yoshimoto N, Morita M (2010) Capacitance of porous carbon electrode in mixed salt non-aqueous electrolytes. J Power Sources 195(6):1761–1764CrossRefGoogle Scholar
  30. 30.
    Mun J, Kim S, Yim T, Ryu JH, Kim YG, Oh SM (2010) Comparative study on surface films from ionic liquids containing saturated and unsaturated substituent for LiCoO2. J Electrochem Soc 157(2):A136–A141.  https://doi.org/10.1149/1.3265476 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lijuan Zhang
    • 1
    • 2
    • 3
    • 4
  • Yanxia Sun
    • 1
    • 2
    • 3
  • Yuan Zhou
    • 1
    • 2
  • Chunxi Hai
    • 1
    • 2
  • Shuqing Hu
    • 4
  • Jinbo Zeng
    • 1
    • 2
  • Yue Shen
    • 1
    • 2
  • Shengde Dong
    • 1
    • 2
    • 3
  • Guicai Qi
    • 1
    • 2
    • 3
  • Faqiang Li
    • 1
    • 2
    • 5
  1. 1.Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt LakesChinese Academy of SciencesXiningChina
  2. 2.Key Laboratory of Salt Lake Resources Chemistry of Qinghai ProvinceQinghaiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.College of Chemistry and Chemical EngineeringQinghai University for NationalitiesXiningChina
  5. 5.Qinghai Research Center of Low-temperature Lithium-ion Battery Technology EngineeringQinghai LCD New Energy Technology Co. Ltd.XiningChina

Personalised recommendations