, Volume 24, Issue 10, pp 2973–2982 | Cite as

Nano Li4Ti5O12 as sulfur host for high-performance Li-S battery

  • Tianbiao Zeng
  • Penghui Ji
  • Biao Shang
  • Qimeng Peng
  • Xuebu HuEmail author
  • Gang Li
Original Paper


S/Li4Ti5O12 cathode with high lithium ionic conductivity was prepared for Li-S battery. Herein, nano Li4Ti5O12 is used as sulfur host and fast Li+ conductor, which can adsorb effectively polysulfides and improve remarkably Li+ diffusion coefficient in sulfur cathode. At 0.5 C, S/Li4Ti5O12 cathode has a stable discharge capacity of 616 mAh g−1 at the 700th cycle and a capacity loss per cycle of 0.0196% from the second to the 700th cycle, but the corresponding values of S/C cathode are 437 mAh g−1 and 0.0598%. Even at 2 C, the capacity loss per cycle of S/Li4Ti5O12 cathode is only 0.0273% from the second to the 700th cycle. The results indicate that Li4Ti5O12 as the sulfur host plays a key role on the high performance of Li-S battery due to reducing the shuttle effect and enhancing lithium ionic conductivity.


Li4Ti5O12 Sulfur host Li+ conductor Polysulfide Electrochemical performance 


Funding information

This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJ1709217, KJ1600926), the National Natural Science Foundation of China (no. 21206203), Chongqing Research Program of Basic Research and Frontier Technology (no. cstc2016jcyjA0438), and the Scientific Research Innovation Team of Chongqing University of Technology (no. cqut2015srim).

Supplementary material

11581_2018_2468_MOESM1_ESM.doc (3.7 mb)
ESM 1 (DOC 3747kb)


  1. 1.
    Manthiram A, Fu YZ, Su YS (2012) Challenges and prospects of lithium-sulfur batteries. Accounts chem res 46:1125–1134CrossRefGoogle Scholar
  2. 2.
    Balakumar K, Sathish R, Kalaiselvi N (2016) Exploration of microporous bio-carbon scaffold for efficient utilization of sulfur in lithium-sulfur system. Electrochim Acta 209:171–182CrossRefGoogle Scholar
  3. 3.
    Niu SZ, Lv W, Zhang C, Shi YT, Zhao JF, Li BH, Yang QH, Kang FY (2015) One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium–sulfur batteries. J Power Sources 295:182–189. CrossRefGoogle Scholar
  4. 4.
    Ponraj R, Aravindaraj GK, Ahn JH, Kim DW (2016) Improvement of cycling performance of lithium-sulfur batteries by using magnesium oxide as a functional additive for trapping lithium polysulfide. ACS Appl Mater Interfaces 8(6):4000–4006. CrossRefPubMedGoogle Scholar
  5. 5.
    Jozwiuk A, Berkes BB, Wei T, Sommer H, Janek J, Brezesinski T (2016) The critical role of lithium nitrate in the gas evolution of lithium-sulfur batteries. Energy EnvironSci 9(8):2603–2608. CrossRefGoogle Scholar
  6. 6.
    Hagen M, Fanz P, Tübke J (2016) Cell energy density and electrolyte/sulfur ratio in Li-S cells. J Power Sources 264:30–34CrossRefGoogle Scholar
  7. 7.
    Lim SH, Thankamony RL, Yim T, Chu HD, Kim YJ, Mun JY, Kim TH (2015) Surface modification of sulfur electrodes by chemically anchored cross-linked polymer coating for lithium-sulfur batteries. ACS Appl Mater Interfaces 7(3):1401–1405. CrossRefPubMedGoogle Scholar
  8. 8.
    Liao HP, Wang HG, Ding HM, Meng XS, Xu H, Wang BH, Ai XP, Wang C (2016) A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium-sulfur batteries. J Mater Chem A 4(19):7416–7421. CrossRefGoogle Scholar
  9. 9.
    Zhang LP, Wang YF, Gou SQ, Zeng JH (2015) All inorganic frameworks of tin dioxide shell as cathode material for lithium sulfur batteries with improved cycle performance. J Phys Chem C 119(52):28721–28727. CrossRefGoogle Scholar
  10. 10.
    Moreno N, Caballero A, Morales JL, Rodríguez-Castellon E (2016) Improved performance of electrodes based on carbonized olive stones/S composites by impregnating with mesoporous TiO2 for advanced Li-S batteries. J Power Sources 313:21–29. CrossRefGoogle Scholar
  11. 11.
    Sun Y, Wang SP, Cheng H, Dai Y, Yu JX, Wu JP (2015) Synthesis of a ternary polyaniline@acetylene black-sulfur material by continuous two-step liquid phase for lithium sulfur batteries. Electrochim Acta 158:143–151. CrossRefGoogle Scholar
  12. 12.
    Zhang C, Lin Y, Zhu YW, Zhang Z, Liu J (2017) Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium–sulfur batteries. RSC Adv 7:19231–19236CrossRefGoogle Scholar
  13. 13.
    Blanga R, Goor M, Burstein L, Rosenberg Y, Gladkich A, Logvinuk D, Shechtman I, Golodnitsky D (2016) The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries. J Solid State Electrochem 20(12):3393–3404. CrossRefGoogle Scholar
  14. 14.
    Fu YZ, Manthiram A (2012) Enhanced cyclability of lithium-sulfur batteries by a polymer acid-doped polypyrrole mixed ionic-electronic conductor. Chem Mater 7:3081–3087CrossRefGoogle Scholar
  15. 15.
    Hu XB, Zhang YL, Zeng TB, Zhong DJ, Zhou DW, Zhang M (2015) Promotional role of Li4Ti5O12 on SnO2-based materials electrochemical performances. Ionics 21(12):3289–3294. CrossRefGoogle Scholar
  16. 16.
    Yu JG, Yu HG (2006) Facile synthesis and characterization of novel nanocomposites of titanate nanotubes and rutile nanocrystals. Mater Chem Phys 100(2-3):507–512. CrossRefGoogle Scholar
  17. 17.
    Tao XY, Wang JG, Ying ZG, Cai QX, Zheng GY, Gan YP, Huang H, Xia Y, Liang C, Zhang WK, Cui Y (2014) Strong sulfur binding with conducting Magnéli-phase TinO2n–1 nanomaterials for improving lithium-sulfur batteries. Nano Lett 14(9):5288–5294. CrossRefPubMedGoogle Scholar
  18. 18.
    Xu G, Yuan J, Tao X, Ding B, Dou H, Yan X, Xiao Y, Zhang X (2015) Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Res 8:3066–3074CrossRefGoogle Scholar
  19. 19.
    Dokko K, Tachikawa N, Yamauchi K, Tsuchiya M, Yamazaki A, Takashima E, Park JW, Ueno K, Seki S, Serizawa N, Watanabe M (2013) Solvate ionic liquid electrolyte for Li-S batteries. J Electrochemi Soc 160(8):A1304–A1310. CrossRefGoogle Scholar
  20. 20.
    Patel MUM, Demir-Cakan R, Morcrette M, Tarascon JM, Gaberscek M, Dominko R (2013) Li-S battery analyzed by UV/Vis in operando mode. ChemSusChem 6(7):1177–1181. CrossRefPubMedGoogle Scholar
  21. 21.
    Zhou GM, Zhao YB, Zu CX, Manthiram A (2015) Free-standingTiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy 12:240–249CrossRefGoogle Scholar
  22. 22.
    Xiao ZB, Yang Z, Wang L, Nie HG, Zhong M, Lai QQ, Xu XJ, Zhang LJ, Huang SM (2015) A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv Mater 27(18):2891–2898. CrossRefPubMedGoogle Scholar
  23. 23.
    Ming J, Li ML, Kumar P, Li LJ (2016) A multilayer approach for advanced hybrid lithium battery. ACS Nano 10(6):6037–6044. CrossRefPubMedGoogle Scholar
  24. 24.
    Cui ZM, Zu CX, Zhou WD, Manthiram A, Goodenough JB (2016) Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv Mater 28(32):6926–6931. CrossRefPubMedGoogle Scholar
  25. 25.
    Xu G, Yuan J, Tao X, Ding B, Dou H, Yan X, Xiao Y, Zhang X (2015) Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Res 8(9):3066–3074. CrossRefGoogle Scholar
  26. 26.
    Xu R, Li JCM, Lu J, Amine K, Belharouak I (2015) Demonstration of highly efficient lithium-sulfur batteries. J Mater Chem A 3(8):4170–4179. CrossRefGoogle Scholar
  27. 27.
    Liang GM, Wu JX, Qin XY, Liu M, Li Q, He YB, Kim JK, Li BH, Kang F (2016) Ultrafine TiO2 decorated carbon nanofibers as multifunctional interlayer for high-performance lithium–sulfur battery. ACS Appl Mater Interfaces 8(35):23105–23113. CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang ZA, Li Q, Jiang SF, Zhang K, Lai YQ, Li J (2015) Sulfur encapsulated in a TiO2-anchored hollow carbon nanofiber hybrid nanostructure for lithium-sulfur batteries. Chem Eur J 21(3):1343–1349. CrossRefPubMedGoogle Scholar
  29. 29.
    Huang JQ, Wang ZY, Xu ZL, Chong WG, Qin XY, Wang XY, Kim JK (2016) Three-dimensional porous graphene aerogel cathode with high sulfur loading and embedded TiO2 nanoparticles for advanced lithium-sulfur batteries. ACS Appl Mater Interfaces 8(42):28663–28670. CrossRefPubMedGoogle Scholar
  30. 30.
    Tao XY, Wang JG, Ying ZG, Cai QX, Zheng GY, Gan YP, Huang H, Xia Y, Liang C, Zhang WK, Cui Y (2014) Strong sulfur binding with conducting magnéli-phase TinO2n-1 nanomaterials for improving lithium–sulfur batteries. Nano Lett 14(9):5288–5294. CrossRefPubMedGoogle Scholar
  31. 31.
    Hao ZX, Yuan LX, Chen CJ, Xiang JW, Li YY, Huang ZM, Hu P, Huang YH (2016) TiN as a simple and efficient polysulfide immobilizer for lithium-sulfur batteries. J Mater Chem A 4(45):17711–17717. CrossRefGoogle Scholar
  32. 32.
    Zhou F, Song LT, Lu LL, Yao HB, Yu SH (2016) Titanium carbide nanoparticles decorated carbon nanofibers as hybrid electrodes for high performance Li-S batteries. ChemNanoMat 2(10):937–941. CrossRefGoogle Scholar
  33. 33.
    Lin C, Zhang WK, Wang L, Wang ZG, Zhao W, Duan WH, Zhao ZG, Liu B, Jin J (2016) A few-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium-sulfur batteries. J Mater Chem A 4(16):5993–5998. CrossRefGoogle Scholar
  34. 34.
    Jozwiuk A, Sommer H, Janek J, Brezesinski T (2015) Fair performance comparison of different carbon blacks inlithium-sulfur batteries with practical mass loadings—simple design competes with complex cathode architecture. J Power Sources 296:454–461. CrossRefGoogle Scholar
  35. 35.
    Huang XK, Cui SH, Chang JB, Hallac PB, Fell CR, Luo YT, Metz B, Jiang JW, Hurley PT, Chen JH (2015) A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life. Angew Chem 127(5):1510–1513. CrossRefGoogle Scholar
  36. 36.
    Liu CJ, Xue FH, Huang H, Yu XH, Xie CJ, Shi MH, Cao GZ, Jung YG, Dong XL (2014) Preparation and electrochemical properties of Fe-Sn (C) nanocomposites as anode for lithium-ion batteries. Electrochim Acta 129:93–99. CrossRefGoogle Scholar
  37. 37.
    Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) An improved high-performance lithium-air battery. Nat Chem 4(7):579–585. CrossRefPubMedGoogle Scholar
  38. 38.
    Ming J, Li ML, Kumar P, Li LJ (2016) A multilayer approach for advanced hybrid lithium battery. ACS Nano 10:037–6044CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tianbiao Zeng
    • 1
  • Penghui Ji
    • 1
  • Biao Shang
    • 1
  • Qimeng Peng
    • 1
  • Xuebu Hu
    • 1
    Email author
  • Gang Li
    • 1
  1. 1.College of Chemistry and Chemical EngineeringChongqing University of TechnologyChongqingChina

Personalised recommendations