Advertisement

Ionics

, Volume 24, Issue 10, pp 3065–3073 | Cite as

Facile synthesis of three-dimensional porous carbon networks for highly stable sodium storage

  • Dan Zhou
  • Li-Zhen Fan
Original Paper
  • 238 Downloads

Abstract

Novel three-dimensional porous carbon network (3D-PC) anode was developed by a facile in situ NaCl-template method utilizing citric acid as carbon source. The synthesis process involves the dissolution of NaCl and citric acid in deionized water, citric acid coated on NaCl template during freeze-drying process, carbonization of the composites, and removal of the template with water. The resultant 3D-PC presents high electrical conductivity, large specific surface area, sufficient active sites, large interlayer distance, and high mechanical flexibility, which are contributed to the efficient Na-storage. Therefore, the 3D-PC anode displays enhanced rate performance of 101 mAh g−1 at 1000 mA g−1 and extremely long cycle life of 138 mAh g−1 after 2000 cycles at 200 mA g−1. The unique synthesis strategy coupled with the excellent Na-storage performance ensures 3D-PC a promising anode material for low-cost sodium-ion batteries.

Keywords

Sodium-ion batteries Carbon networks Anode Long cycle life Low-cost 

Notes

Funding information

Financial supports from the Natural Scientific Foundation of China (51532002) and the National Basic Research Program of China (2015CB932500) are gratefully acknowledged.

Supplementary material

11581_2017_2434_MOESM1_ESM.doc (137 kb)
ESM 1 (DOC 137 kb)

References

  1. 1.
    Sun J, Lee HW, Pasta M, Yuan HT, Zheng GY, Sun YM, Li YZ, Cui Y (2015) A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol 10(11):980–985.  https://doi.org/10.1038/nnano.2015.194 CrossRefPubMedGoogle Scholar
  2. 2.
    Liu YC, Liu XB, Wang TS, Fan LZ, Jiao LF (2017) Research and application progress on key materials for sodium-ion batteries. Sustainable Energy & Fuels 1(5):986–1006.  https://doi.org/10.1039/C7SE00120G CrossRefGoogle Scholar
  3. 3.
    Hwang JY, Myung ST, Sun YK (2011) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614CrossRefGoogle Scholar
  4. 4.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682.  https://doi.org/10.1021/cr500192f CrossRefPubMedGoogle Scholar
  5. 5.
    Ni JF, SD F, Wu C, Maier J, Yu Y, Li L (2016) Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv Mater 28(11):2259–2265.  https://doi.org/10.1002/adma.201504412 CrossRefPubMedGoogle Scholar
  6. 6.
    XY W, Jin SF, Zhang ZZ, Jiang LW, LQ M, YS H, Li H, Chen XL, Armand M, Chen LQ, Huan XJ (2015) Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Sci Adv 1:e1500330CrossRefGoogle Scholar
  7. 7.
    Wang PF, You Y, Yin YX, Wang YS, Wan LJ, Gu L, Guo YG (2016) Suppressing the P2–O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed 55(26):7445–7449.  https://doi.org/10.1002/anie.201602202 CrossRefGoogle Scholar
  8. 8.
    Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5(3):5884–5901.  https://doi.org/10.1039/c2ee02781j CrossRefGoogle Scholar
  9. 9.
    Pan HL, YS H, Chen LQ (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6(8):2338–2360.  https://doi.org/10.1039/c3ee40847g CrossRefGoogle Scholar
  10. 10.
    Zhou D, Song WL, Fan LZ (2015) Hollow core-shell SnO2/C fibers as highly stable anodes for Lithium-ion batteries. ACS Applied Mater & interfaces 7(38):21472–21478.  https://doi.org/10.1021/acsami.5b06512 CrossRefGoogle Scholar
  11. 11.
    Chi SS, Liu YC, Song WL, Fan LZ, Zhang Q (2017) Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode Adv. Func. Mater. 27: 1700348(1-10)CrossRefGoogle Scholar
  12. 12.
    Liu YC, Fan LZ, Jiao LF (2017) Graphene highly scattered in porous carbon nanofibers: a binder-free and high-performance anode for sodium-ion batteries. J Mater Chem A 5(4):1698–1705.  https://doi.org/10.1039/C6TA09961K CrossRefGoogle Scholar
  13. 13.
    Kim H, Kim H, Ding Z, Lee MH, Lim K, Yoon G, Kang K (2016) Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater 6(19):1600943.  https://doi.org/10.1002/aenm.201600943 CrossRefGoogle Scholar
  14. 14.
    Wu XY, Luo Y, Sun MY, Qian JF, Cao YL, Ai XP, Yang HX (2015) Low-defect prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 13:117–123CrossRefGoogle Scholar
  15. 15.
    Sun Y, Zhao L, Pan HL, Lu X, Gu L, YS H, Li H, Armand M, Ikuhara Y, Chen LQ, Huang XJ (2013) Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat Commun 4:1870.  https://doi.org/10.1038/ncomms2878 CrossRefPubMedGoogle Scholar
  16. 16.
    Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Nakanishi K, Abe T (2015) Hierarchically porous Li4Ti5O12 anode materials for Li- and Na-ion batteries: effects of nanoarchitectural design and temperature dependence of the rate capability. Adv Energy Mater 5(1):1400730.  https://doi.org/10.1002/aenm.201400730 CrossRefGoogle Scholar
  17. 17.
    Rui XH, Sun WP, Wu C, Yu Y, Yan QY (2016) An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv Mater 27:6670–6676CrossRefGoogle Scholar
  18. 18.
    Jiang Y, Yang ZZ, Li WH, Zeng LC, Pan FS, Wang M, Wei X, GT H, Gu L, Yu Y (2015) Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv Energy Mater 5(10):1402104.  https://doi.org/10.1002/aenm.201402104 CrossRefGoogle Scholar
  19. 19.
    Sharma N, Gonzalo E, Pramudita JC, Han MH, Brand HEA, Hart JN, Pang WK, Guo ZP, Rojo T (2015) The unique structural evolution of the O3-phase Na2/3Fe2/3Mn1/3O2 during high rate charge/discharge: a sodium-centred perspective. Adv Funct Mater 25(31):4994–5005.  https://doi.org/10.1002/adfm.201501655 CrossRefGoogle Scholar
  20. 20.
    Gonzalo E, Han MH, López del Amo JM, Acebedo B, Casas-Cabanas M, Rojo T (2014) Synthesis and characterization of pure P2- and O3-Na2/3Fe2/3Mn1/3O2 as cathode materials for Na ion batteries. J Mater Chem A 2(43):18523–18530.  https://doi.org/10.1039/C4TA03991B CrossRefGoogle Scholar
  21. 21.
    CY Y, Park JS, Jung HG, Chung KY, Aurbach D, Sun YK, Myung ST (2015) NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ Sci 8:2019–2026CrossRefGoogle Scholar
  22. 22.
    Patra J, Chen HC, Yang CH, Hsieh CT, CY S, Chang JK (2016) High dispersion of 1-nm SnO2 particles between graphene nanosheets constructed using supercritical CO2 fluid for sodium-ion battery anodes. Nano Energy 28:124–134.  https://doi.org/10.1016/j.nanoen.2016.08.044 CrossRefGoogle Scholar
  23. 23.
    Hu Z, Zhu ZQ, Cheng FY, Zhang K, Wang JB, Chen CC, Chen J (2015) Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ Sci 8(4):1309–1316.  https://doi.org/10.1039/C4EE03759F CrossRefGoogle Scholar
  24. 24.
    Zhou D, Li XG, Fan LZ, Deng YH (2017) Three-dimensional porous graphene-encapsulated CNT@SnO2 composite for high-performance lithium and sodium storage. Electrochim Acta 230:212–221.  https://doi.org/10.1016/j.electacta.2017.02.016 CrossRefGoogle Scholar
  25. 25.
    Li H, Wang YH, Jiang JL, Zhang YY, Peng YY, Zhao JB (2017) CuS microspheres as high-performance anode material for Na-ion batteries. Electrochim Acta 247:851–859.  https://doi.org/10.1016/j.electacta.2017.07.018 CrossRefGoogle Scholar
  26. 26.
    Liu J, Wen YR, van Aken PA, Maier J, Yu Y (2014) Facile synthesis of highly porous Ni–Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett 14(11):6387–6392.  https://doi.org/10.1021/nl5028606 CrossRefPubMedGoogle Scholar
  27. 27.
    Xin FX, Tian HJ, Wang XL, Xu W, Zheng WG, Han WQ (2015) Enhanced electrochemical performance of Fe0.74Sn5@reduced graphene oxide nanocomposite anodes for both Li-ion and Na-ion batteries. ACS Appl Mater Interfaces 7(15):7912–7919.  https://doi.org/10.1021/am508547g CrossRefPubMedGoogle Scholar
  28. 28.
    Li WH, Li MS, Adair KR, Sun XL, Yu Y (2017) Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. J Mater Chem A 5(27):13882–13906.  https://doi.org/10.1039/C7TA02153D CrossRefGoogle Scholar
  29. 29.
    Wang J, Nie P, Ding B, Dong SY, Hao XD, Dou H, Zhang XG (2017) Biomass derived carbon for energy storage devices. J Mater Chem A 5(6):2411–2428.  https://doi.org/10.1039/C6TA08742F CrossRefGoogle Scholar
  30. 30.
    Ding XL, Huang YY, Li GL, Tang Y, Li XC, Huang YH (2017) Phosphorus nanoparticles combined with cubic boron nitride and graphene as stable sodium-ion battery anodes. Electrochim Acta 235:150–157.  https://doi.org/10.1016/j.electacta.2017.03.055 CrossRefGoogle Scholar
  31. 31.
    Liu YC, Zhang N, Liu XB, Chen CC, Fan LZ, Jiao LF (2017) Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries. Energy Storage Mater 10: 170–178CrossRefGoogle Scholar
  32. 32.
    Balogun MS, Luo Y, Qiu WT, Liu P, Tong YX (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178.  https://doi.org/10.1016/j.carbon.2015.09.091 CrossRefGoogle Scholar
  33. 33.
    Bai Y, Wang Z, Wu C, Xu R, Wu F, Liu YC, Li H, Li Y, Lu J, Amine K (2015) Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. ACS Appl Mater Interfaces 7(9):5598–5604.  https://doi.org/10.1021/acsami.5b00861 CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang HM, Ming H, Zhang WF, Cao GP, Yang YS (2017) Coupled carbonization strategy toward advanced hard carbon for high-energy sodium-ion battery. ACS Appl Mater Interfaces 9(28):23766–23774.  https://doi.org/10.1021/acsami.7b05687 CrossRefPubMedGoogle Scholar
  35. 35.
    Lu HL, Chen RP, Hu Y, Wang XQ, Wang YR, Ma LB, Zhu GY, Chen T, Tie ZX, Jin Z, Liu J (2017) Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. Nano 9:1972–1977Google Scholar
  36. 36.
    Cao YL, Xiao LF, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie ZM, Saraf LV, Yang ZG, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12(7):3783–3787.  https://doi.org/10.1021/nl3016957 CrossRefPubMedGoogle Scholar
  37. 37.
    Ding J, Wang HL, Li Z, Kohandehghan A, Cui K, ZW X, Zahiri B, Tan XH, Lotfabad EM, Olsen BC, Mitlin D (2013) Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12):11004–11015.  https://doi.org/10.1021/nn404640c CrossRefPubMedGoogle Scholar
  38. 38.
    Hou HS, Banks CE, Jing MJ, Zhang Y, Ji XB (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27(47):7861–7866.  https://doi.org/10.1002/adma.201503816 CrossRefPubMedGoogle Scholar
  39. 39.
    Qin J, He CN, Zhao NQ, Wang ZY, Shi CS, Liu EZ, Li J (2014) Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 8(2):1728–1738.  https://doi.org/10.1021/nn406105n CrossRefPubMedGoogle Scholar
  40. 40.
    Li GX, Sun JH, Hou WP, Jiang SD, Huang Y, Geng JX (2016) Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries. Nat Commun 7:10601.  https://doi.org/10.1038/ncomms10601 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhang ZA, Zhang J, Zhao XX, Yang FH (2015) Core-sheath structured porous carbon nanofiber composite anode material derived from bacterial cellulose/polypyrrole as an anode for sodium-ion batteries. Carbon 95:552–559.  https://doi.org/10.1016/j.carbon.2015.08.069 CrossRefGoogle Scholar
  42. 42.
    Suryawanshi A, Mhamane D, Nagane S, Patil S, Aravindan V, Ogale S, Srinivasan M (2014) Indanthrone derived disordered graphitic carbon as promising insertion anode for sodium ion battery with long cycle life. Electrochim Acta 146:218–223.  https://doi.org/10.1016/j.electacta.2014.09.052 CrossRefGoogle Scholar
  43. 43.
    Zhou D, Liu YC, Song WL, Li XG, Fan LZ, Deng YH (2017) Three-dimensional porous carbon-coated graphene composite as high-stable and long-life anode for sodium-ion batteries. Chem Eng J 316:645–654.  https://doi.org/10.1016/j.cej.2017.02.008 CrossRefGoogle Scholar
  44. 44.
    Zou GQ, Jia XN, Huang ZD, Li SM, Liao HX, Hou HS, Huang LP, Ji XB (2016) Cube-shaped porous carbon derived from MOF-5 as advanced material for sodium-ion batteries. Electrochim Acta 196:413–421.  https://doi.org/10.1016/j.electacta.2016.03.016 CrossRefGoogle Scholar
  45. 45.
    Pol VG, Lee E, Zhou DH, Dogan F, Calderon-Moreno JM, Johnson CS (2014) Spherical carbon as a new high-rate anode for sodium-ion batteries. Electrochim Acta 127:61–67.  https://doi.org/10.1016/j.electacta.2014.01.132 CrossRefGoogle Scholar
  46. 46.
    Zhang KL, Li XN, Liang JW, Zhu YC, Hu L, Cheng QS, Guo C, Lin N, Qian YT (2015) Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim Acta 155:174–182.  https://doi.org/10.1016/j.electacta.2014.12.108 CrossRefGoogle Scholar
  47. 47.
    Jiang Q, Zhang ZH, Yin SY, Guo ZP, Wang SQ, Feng CQ (2016) Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries. Appl Surf Sci 379:73–82.  https://doi.org/10.1016/j.apsusc.2016.03.204 CrossRefGoogle Scholar
  48. 48.
    Zhang J, Zhang ZA, Zhao XX (2015) A graphene/nitrogen-doped carbon nanofiber composite as an anode material for sodium-ion batteries. RSC Adv 5(127):104822–104828.  https://doi.org/10.1039/C5RA19548A CrossRefGoogle Scholar
  49. 49.
    Liu XD, Wen MM, Zhao YM, Dong YZ, Fan QH, Kuang Q, Li QD (2016) Cheese-like bulk carbon with nanoholes prepared from egg white as an anode material for lithium and sodium ion batteries. RSC Adv 6(84):80986–80993.  https://doi.org/10.1039/C6RA16905H CrossRefGoogle Scholar
  50. 50.
    Zhou DH, Peer M, Yang ZZ, Pol VG, Key FD, Jorne J, Foley HC, Johnson CS (2016) Long cycle life microporous spherical carbon anodes for sodium-ion batteries derived from furfuryl alcohol. J Mater Chem A 4(17):6271–6275.  https://doi.org/10.1039/C6TA00242K CrossRefGoogle Scholar
  51. 51.
    Chen TQ, Pan LK, Lu T, CL F, Chua DHC, Sun Z (2014) Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries. J Mater Chem A 2(5):1263–1267.  https://doi.org/10.1039/C3TA14037G CrossRefGoogle Scholar
  52. 52.
    Wang ZH, Qie L, Yuan LX, Zhang WX, XL H, Huang YH (2013) Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55:328–334.  https://doi.org/10.1016/j.carbon.2012.12.072 CrossRefGoogle Scholar
  53. 53.
    Song HW, Li N, Cui H, Wang CX (2014) Enhanced storage capability and kinetic processes by pores- and hetero-atoms- riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes. Nano Energy 4:81–87.  https://doi.org/10.1016/j.nanoen.2013.12.017 CrossRefGoogle Scholar
  54. 54.
    Matsuo Y, Ueda K (2014) Pyrolytic carbon from graphite oxide as a negative electrode of sodium-ion battery. J Power Sources 263:158–162.  https://doi.org/10.1016/j.jpowsour.2014.04.038 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations