Advertisement

Ionics

, Volume 24, Issue 10, pp 3053–3063 | Cite as

Facile and green fabrication of polybenzoxazine-based composite anion-exchange membranes with a self-cross-linked structure

  • Naeem Akhtar Qaisrani
  • Yanjiao Ma
  • Lingling Ma
  • Jiafei Liu
  • Li Gao
  • Lv Li
  • Shoutao Gong
  • Xiaoming Yan
  • Fengxiang Zhang
  • Gaohong He
Original Paper

Abstract

A new type of composite anion-exchange membrane is fabricated using benzoxazine (Bz) monomer and polytetrafluoroethylene (PTFE) via a green and facile method. Membrane fabrication is achieved via in situ ring-opening polymerization of Bz within the PTFE matrix, followed by quaternization and ion-exchange reactions. The quaternized PBz works as a self-cross-linked and anion conductive polymer. The synthesized membranes show improved conductivity (26 to 70 mS/cm) at a reasonable water uptake and a low swelling ratio; they also show improved alkaline stability for 150 h at 60 °C in 1 M KOH solution, the decrease in conductivity being only ca. 10%. Our method of AEM fabrication is advantageous over conventional ones due to facile process and the avoidance of chloro- or bromomethylation as well as the self-cross-linked structure; the resulting membranes show relatively good performance as compared with some of those obtained from conventional techniques.

Keywords

Anion-exchange membrane Polybenzoxazine PTFE Self-cross-linked 

Notes

Acknowledgments

We acknowledge the financial supports from the National Key Research and Development Program of China (2016YFB0101203), China MOST Innovation Team in Key Area (2016RA4053), the National Natural Science Foundation of China (21276252, 21776042), Natural Science Foundation of Liaoning Province (2015020630), Program for Liaoning Innovative Research Team in University (LT2015007) and State Key Laboratory of Fine Chemicals (Panjin) (JH2014009).

References

  1. 1.
    Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci 377(1-2):1):1–1)35.  https://doi.org/10.1016/j.memsci.2011.04.043 CrossRefGoogle Scholar
  2. 2.
    Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279.  https://doi.org/10.1007/s11581-016-1756-4 CrossRefGoogle Scholar
  3. 3.
    Yan X, He G, Gu S, Wu X, Du L, Zhang H (2011) Quaternized poly(ether ether ketone) hydroxide exchange membranes for fuel cells. J Membr Sci 375(1–2):204–211.  https://doi.org/10.1016/j.memsci.2011.03.046 CrossRefGoogle Scholar
  4. 4.
    Zhang B, Li L, He G, Gai F, Zhang F (2016) Imidazolium functionalized polysulfone electrolyte membranes with varied chain structures: a comparative study. RSC Adv 6(37):31336–31346.  https://doi.org/10.1039/C6RA01137C CrossRefGoogle Scholar
  5. 5.
    Hahn S-J, Won M, Kim T-H (2013) A morpholinium-functionalized poly(ether sulfone) as a novel anion exchange membrane for alkaline fuel cell. Polym Bull 70(12):3373–3385.  https://doi.org/10.1007/s00289-013-1028-7 CrossRefGoogle Scholar
  6. 6.
    Liu Y, Dai J, Zhang K, Ma L, Qaisrani NA, Zhang F, He G (2017) Hybrid anion exchange membrane of hydroxyl-modified polysulfone incorporating guanidinium-functionalized graphene oxide. Ionics 23(11):3085–3096.  https://doi.org/10.1007/s11581-017-2100-3 CrossRefGoogle Scholar
  7. 7.
    Papakonstantinou P, Deimede V (2016) Self-cross-linked quaternary phosphonium based anion exchange membranes: assessing the influence of quaternary phosphonium groups on alkaline stability. RSC Adv 6(115):114329–114343.  https://doi.org/10.1039/C6RA24102F CrossRefGoogle Scholar
  8. 8.
    Doyle M, Lewittes ME, Roelofs MG, Perusich SA (2001) Ionic conductivity of nonaqueous solvent-swollen Ionomer membranes based on fluorosulfonate, fluorocarboxylate, and sulfonate fixed ion groups. J Phys Chem B 105(39):9387–9394.  https://doi.org/10.1021/jp0038308 CrossRefGoogle Scholar
  9. 9.
    Sata T, Tagami Y, Matsusaki K (1998) Transport properties of anion-exchange membranes having a hydrophobic layer on their surface in electrodialysis. J Phys Chem B 102(43):8473–8479.  https://doi.org/10.1021/jp980380z CrossRefGoogle Scholar
  10. 10.
    Yan X, Gao L, Zheng W, Ruan X, Zhang C, Wu X, He G (2016) Long-spacer-chain imidazolium functionalized poly(ether ether ketone) as hydroxide exchange membrane for fuel cell. Int J Hydrog Energy 41(33):14982–14990.  https://doi.org/10.1016/j.ijhydene.2016.06.030 CrossRefGoogle Scholar
  11. 11.
    Rao AHN, Nam S, Kim T-H (2016) Alkyl bisimidazolium-mediated crosslinked comb-shaped polymers as highly conductive and stable anion exchange membranes. RSC Adv 6(20):16168–16176.  https://doi.org/10.1039/C5RA25190G CrossRefGoogle Scholar
  12. 12.
    Lai AN, Wang LS, Lin CX, Zhuo YZ, Zhang QG, Zhu AM, Liu QL (2015) Phenolphthalein-based poly(arylene ether sulfone nitrile)s multiblock copolymers as anion exchange membranes for alkaline fuel cells. ACS Appl Mater Interfaces 7(15):8284–8292.  https://doi.org/10.1021/acsami.5b01475 CrossRefPubMedGoogle Scholar
  13. 13.
    Hou H, Wang S, Liu H, Sun L, Jin W, Jing M, Jiang L, Sun G (2011) Synthesis and characterization of a new anion exchange membrane by a green and facile route. Int J Hydrog Energy 36(18):11955–11960.  https://doi.org/10.1016/j.ijhydene.2011.06.054 CrossRefGoogle Scholar
  14. 14.
    L-c J, SL-c H, B-y L, Y-l H (2014) Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells. J Membr Sci 460 (Supplement C) 460:160–170.  https://doi.org/10.1016/j.memsci.2014.02.043 CrossRefGoogle Scholar
  15. 15.
    Wang XQ, Lin CX, Zhang QG, Zhu AM, Liu QL (2017) Anion exchange membranes from hydroxyl-bearing poly(ether sulfone)s with flexible spacers via ring-opening grafting for fuel cells. Int J Hydrog Energy 42(30):19044–19055.  https://doi.org/10.1016/j.ijhydene.2017.06.186 CrossRefGoogle Scholar
  16. 16.
    Hu J, Zhang C, Zhang X, Chen L, Jiang L, Meng Y, Wang X (2014) A green approach for preparing anion exchange membrane based on cardo polyetherketone powders. J Power Sources 272 (Supplement C) 272:211–217.  https://doi.org/10.1016/j.jpowsour.2014.08.076 CrossRefGoogle Scholar
  17. 17.
    Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines—new high performance thermosetting resins: synthesis and properties. Prog Polym Sci 32(11):1344–1391.  https://doi.org/10.1016/j.progpolymsci.2007.07.002 CrossRefGoogle Scholar
  18. 18.
    Takeichi T, Saito Y, Agag T, Muto H, Kawauchi T (2008) High-performance polymer alloys of polybenzoxazine and bismaleimide. Polymer 49(5):1173–1179.  https://doi.org/10.1016/j.polymer.2008.01.041 CrossRefGoogle Scholar
  19. 19.
    Lu S, Xiu R, Xu X, Liang D, Wang H, Xiang Y (2014) Polytetrafluoroethylene (PTFE) reinforced poly(ethersulphone)–poly(vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells. J Membr Sci 464:1–7.  https://doi.org/10.1016/j.memsci.2014.03.053 CrossRefGoogle Scholar
  20. 20.
    Liu F, Yi B, Xing D, Yu J, Zhang H (2003) Nafion/PTFE composite membranes for fuel cell applications. J Membr Sci 212(1–2):213–223.  https://doi.org/10.1016/S0376-7388(02)00503-3 CrossRefGoogle Scholar
  21. 21.
    Zhang F, Zhang H, Ren J, Qu C (2010) PTFE based composite anion exchange membranes: thermally induced in situ polymerization and direct hydrazine hydrate fuel cell application. J Mater Chem 20(37):8139–8146.  https://doi.org/10.1039/C0JM01311K CrossRefGoogle Scholar
  22. 22.
    Qu C, Zhang H, Zhang F, Liu B (2012) A high-performance anion exchange membrane based on bi-guanidinium bridged polysilsesquioxane for alkaline fuel cell application. J Mater Chem 22(17):8203–8207.  https://doi.org/10.1039/C2JM16211C CrossRefGoogle Scholar
  23. 23.
    Ning X, Ishida H (1994) Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers. J Polym Sci A Polym Chem 32(6):1121–1129.  https://doi.org/10.1002/pola.1994.080320614 CrossRefGoogle Scholar
  24. 24.
    Renaud A, Poorteman M, Escobar J, Dumas L, Paint Y, Bonnaud L, Dubois P, Olivier M-G (2017) A new corrosion protection approach for aeronautical applications combining a Phenol-paraPhenyleneDiAmine benzoxazine resin applied on sulfo-tartaric anodized aluminum. Progress in Organic Coatings 112:278–287.  https://doi.org/10.1016/j.porgcoat.2017.07.007 CrossRefGoogle Scholar
  25. 25.
    Wang X, Li MQ, Golding BT, Sadeghi M, Cao YC, EH Y, Scott K (2011) A polytetrafluoroethylene-quaternary 1,4-diazabicyclo- 2.2.2 -octane polysulfone composite membrane for alkaline anion exchange membrane fuel cells. Int J Hydrog Energy 36(16):10022–10026.  https://doi.org/10.1016/j.ijhydene.2011.05.054 CrossRefGoogle Scholar
  26. 26.
    Zhao Y, HM Y, Xing DM, WT L, Shao ZG, Yi BL (2012) Preparation and characterization of PTFE based composite anion exchange membranes for alkaline fuel cells. J Membr Sci 421:311–317.  https://doi.org/10.1016/j.memsci.2012.07.034 CrossRefGoogle Scholar
  27. 27.
    Cao YC, Scott K, Wang X (2012) Preparation of polytetrafluoroethylene porous membrane based composite alkaline exchange membrane with improved tensile strength and its fuel cell test. Int J Hydrog Energy 37(17):12688–12693.  https://doi.org/10.1016/j.ijhydene.2012.05.134 CrossRefGoogle Scholar
  28. 28.
    Guo TY, Zeng QH, Zhao CH, Liu QL, Zhu AM, Broadwell I (2011) Quaternized polyepichlorohydrin/PTFE composite anion exchange membranes for direct methanol alkaline fuel cells. J Membr Sci 371(1–2):268–275.  https://doi.org/10.1016/j.memsci.2011.01.043 CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Yu H, Xie F, Liu Y, Shao Z, Yi B (2014) High durability and hydroxide ion conducting pore-filled anion exchange membranes for alkaline fuel cell applications. J Power Sources 269:1–6.  https://doi.org/10.1016/j.jpowsour.2014.06.026 CrossRefGoogle Scholar
  30. 30.
    Lin CX, Zhuo YZ, EN H, Zhang QG, Zhu AM, Liu QL (2017) Crosslinked side-chain-type anion exchange membranes with enhanced conductivity and dimensional stability. J Membr Sci 539:24–33.  https://doi.org/10.1016/j.memsci.2017.05.063 CrossRefGoogle Scholar
  31. 31.
    Hwang DS, Sherazi TA, Sohn JY, Noh YC, Park CH, Guiver MD, Lee YM (2015) Anisotropic radio-chemically pore-filled anion exchange membranes for solid alkaline fuel cell (SAFC). J Membr Sci 495:206–215.  https://doi.org/10.1016/j.memsci.2015.07.067 CrossRefGoogle Scholar
  32. 32.
    Wu L, Pan Q, Varcoe JR, Zhou D, Ran J, Yang Z, Xu T (2015) Thermal crosslinking of an alkaline anion exchange membrane bearing unsaturated side chains. J Membr Sci 490 (Supplement C) 490:1–8.  https://doi.org/10.1016/j.memsci.2015.04.046 CrossRefGoogle Scholar
  33. 33.
    Ran J, Wu L, Ge Q, Chen Y, Xu T (2014) High performance anion exchange membranes obtained through graft architecture and rational cross-linking. J Membr Sci 470:229–236.  https://doi.org/10.1016/j.memsci.2014.07.036 CrossRefGoogle Scholar
  34. 34.
    Emmanuel K, Cheng C, Erigene B, Mondal AN, Hossain MM, Khan MI, Afsar NU, Liang G, Wu L, Xu T (2016) Imidazolium functionalized anion exchange membrane blended with PVA for acid recovery via diffusion dialysis process. J Membr Sci 497:209–215.  https://doi.org/10.1016/j.memsci.2015.09.043 CrossRefGoogle Scholar
  35. 35.
    Liu M, Wang Z, Mei J, Xu J, Xu L, Han H, Ni H, Wang S (2016) A facile functionalized routine for the synthesis of imidazolium-based anion-exchange membrane with excellent alkaline stability. J Membr Sci 505:138–147.  https://doi.org/10.1016/j.memsci.2016.01.036 CrossRefGoogle Scholar
  36. 36.
    Akiyama R, Yokota N, Nishino E, Asazawa K, Miyatake K (2016) Anion conductive aromatic copolymers from dimethylaminomethylated monomers: synthesis, properties, and applications in alkaline fuel cells. Macromolecules 49(12):4480–4489.  https://doi.org/10.1021/acs.macromol.6b00408 CrossRefGoogle Scholar
  37. 37.
    Zhao Y, Pan J, Yu H, Yang D, Li J, Zhuang L, Shao Z, Yi B (2013) Quaternary ammonia polysulfone-PTFE composite alkaline anion exchange membrane for fuel cells application. Int J Hydrog Energy 38(4):1983–1987.  https://doi.org/10.1016/j.ijhydene.2012.11.055 CrossRefGoogle Scholar
  38. 38.
    Cheng J, He G, Zhang F (2015) A mini-review on anion exchange membranes for fuel cell applications: stability issue and addressing strategies. Int J Hydrog Energy 40(23):7348–7360.  https://doi.org/10.1016/j.ijhydene.2015.04.040 CrossRefGoogle Scholar
  39. 39.
    Park J-S, Park S-H, Yim S-D, Yoon Y-G, Lee W-Y, Kim C-S (2008) Performance of solid alkaline fuel cells employing anion-exchange membranes. J Power Sources 178(2):620–626.  https://doi.org/10.1016/j.jpowsour.2007.08.043 CrossRefGoogle Scholar
  40. 40.
    Cope AC, Mehta AS (1963) Mechanism of the Hofmann elimination reaction: an ylide intermediate in the pyrolysis of a highly branched quaternary hydroxide. J Am Chem Soc 85(13):1949–1952.  https://doi.org/10.1021/ja00896a012 CrossRefGoogle Scholar
  41. 41.
    Yang Y, Wang J, Zheng J, Li S, Zhang S (2014) A stable anion exchange membrane based on imidazolium salt for alkaline fuel cell. J Membr Sci 467:48–55.  https://doi.org/10.1016/j.memsci.2014.05.017 CrossRefGoogle Scholar
  42. 42.
    Li X, Nie G, Tao J, Wu W, Wang L, Liao S (2014) Assessing the influence of side-chain and main-chain aromatic Benzyltrimethyl ammonium on anion exchange membranes. ACS Appl Mater Interfaces 6(10):7585–7595.  https://doi.org/10.1021/am500915w CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Naeem Akhtar Qaisrani
    • 1
  • Yanjiao Ma
    • 1
  • Lingling Ma
    • 1
  • Jiafei Liu
    • 1
  • Li Gao
    • 1
  • Lv Li
    • 1
  • Shoutao Gong
    • 1
  • Xiaoming Yan
    • 1
  • Fengxiang Zhang
    • 1
  • Gaohong He
    • 1
  1. 1.State Key Laboratory of Fine Chemicals, School of Chemical and Petroleum EngineeringDalian University of TechnologyPanjinChina

Personalised recommendations