Advertisement

Ionics

, Volume 24, Issue 10, pp 3187–3197 | Cite as

Voltammetric determination of nitrite with gold nanoparticles/poly(methylene blue)-modified pencil graphite electrode: application in food and water samples

  • Ozge Koyun
  • Yucel Sahin
Original Paper
  • 211 Downloads

Abstract

This work presents the preparation and characterization studies of gold nanoparticle/poly(methylene blue) (GNP/PMB)-modified pencil graphite electrode (PGE) and its use for electrochemical determination of nitrite. The working electrode (PGE) was functionalized by electropolymerization of methylene blue (MB) and modified with gold nanoparticles (GNPs) to produce the final (GNP/PMB/PGE) electrode in a two-step procedure. Characterization and morphology studies of GNP/PMB/PGE were performed by electrochemical impedance spectroscopy, cyclic voltammetry, X-ray photoelectron spectroscopy, Fourier transform Infrared spectroscopy, and scanning electron microscopy techniques. The highest peak current response was obtained for nitrite at pH 5.0. A wide linear relationship between the concentration and the oxidation peak currents of nitrite was observed in the concentration range of 5–5000 μM. The limit of detection (0.314 μM, S/N = 3) and reproducibility (RSD = 2.38% for N = 10) have been identified. Finally, the electrode platform was successfully applied to commercial sausage and mineral water samples.

Keywords

Nitrite Gold nanoparticle Poly(methylene blue) Pencil graphite electrode Differential pulse voltammetry 

Notes

Acknowledgements

We greatly acknowledge Semih Gorduk from the Yildiz Technical University.

Funding information

We express our sincere thanks to the financial support of the Yildiz Technical University Scientific Research Projects Coordination Department (project no.: FDK-2017-3130).

References

  1. 1.
    Davis J, McKeegan KJ, Cardosi MF, Vaughan DH (1999) Evaluation of phenolic assays for the detection of nitrite. Talanta 50(1):103–112.  https://doi.org/10.1016/S0039-9140(99)00110-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Jo C, Ahn H, Son J, Lee J, Byun M (2003) Packaging and irradiation effect on lipid oxidation, color, residual nitrite content, and nitrosamine formation in cooked pork sausage. Food Control 14(1):7–12.  https://doi.org/10.1016/S0956-7135(02)00045-2 CrossRefGoogle Scholar
  3. 3.
    Parsaei M, Asadi Z, Khodadoust S (2015) A sensitive electrochemical sensor for rapid and selective determination of nitrite ion in water samples using modified carbon paste electrode with a newly synthesized cobalt(II)-Schiff base complex and magnetite nanospheres. Sensors Actuators B Chem 220:1131–1138.  https://doi.org/10.1016/j.snb.2015.06.096 CrossRefGoogle Scholar
  4. 4.
    Davis J, Compton RG (2000) Sonoelectrochemically enhanced nitrite detection. Anal Chim Acta 404(2):241–247.  https://doi.org/10.1016/S0003-2670(99)00724-2 CrossRefGoogle Scholar
  5. 5.
    Chow C, Hong C (2002) Dietary vitamin E and selenium and toxicity of nitrite and nitrate. Toxicology 180(2):195–207.  https://doi.org/10.1016/S0300-483X(02)00391-8 CrossRefPubMedGoogle Scholar
  6. 6.
    Kuznetsov V, Zemyatova S (2007) Flow-injection spectrophotometry of nitrites based on the diazotization reactions of azine dyes. J Anal Chem 62(7):637–644.  https://doi.org/10.1134/S1061934807070052 CrossRefGoogle Scholar
  7. 7.
    Ito K, Takayama Y, Makabe N, Mitsui R, Hirokawa T (2005) Ion chromatography for determination of nitrite and nitrate in seawater using monolithic ODS columns. J Chromatogr A 1083(1):63–67.  https://doi.org/10.1016/j.chroma.2005.05.073 CrossRefPubMedGoogle Scholar
  8. 8.
    Niedzielski P, Kurzyca I, Siepak J (2006) A new tool for inorganic nitrogen speciation study: simultaneous determination of ammonium ion, nitrite and nitrate by ion chromatography with post-column ammonium derivatization by Nessler reagent and diode-array detection in rain water samples. Anal Chim Acta 577(2):220–224.  https://doi.org/10.1016/j.aca.2006.06.057 CrossRefPubMedGoogle Scholar
  9. 9.
    Wang X, Adams E, Van Schepdael A (2012) A fast and sensitive method for the determination of nitrite in human plasma by capillary electrophoresis with fluorescence detection. Talanta 97:142–144.  https://doi.org/10.1016/j.talanta.2012.04.008 CrossRefPubMedGoogle Scholar
  10. 10.
    Davis J, Moorcroft MJ, Wilkins SJ, Compton RG, Cardosi MF (2000) Electrochemical detection of nitrate and nitrite at a copper modified electrode. Analyst 125(4):737–742.  https://doi.org/10.1039/a909762g CrossRefGoogle Scholar
  11. 11.
    Wang S, Yin Y, Lin X (2004) Cooperative effect of Pt nanoparticles and Fe(III) in the electrocatalytic oxidation of nitrite. Electrochem Commun 6(3):259–262.  https://doi.org/10.1016/j.elecom.2003.12.008 CrossRefGoogle Scholar
  12. 12.
    Zhang O, Wen Y, Xu J, Lu L, Duan X, Yu H (2013) One-step synthesis of poly (3,4-ethylenedioxythiophene)-Au composites and their application for the detection of nitrite. Synth Met 164:47–51.  https://doi.org/10.1016/j.synthmet.2012.11.013 CrossRefGoogle Scholar
  13. 13.
    Yilmaz H, Kocak A, Dilimulati M, Zorlu Y, Andac M (2017) A new Co(III) complex of Schiff base derivative for electrochemical recognition of nitrite anion. J Chem Sci 129(10):1559-1569.  https://doi.org/10.1007/s12039-017-1363-6 CrossRefGoogle Scholar
  14. 14.
    Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New YorkGoogle Scholar
  15. 15.
    He X-P, Zhu B-W, Zang Y, Li J, Chen G-R, Tian H, Long Y-T (2015) Dynamic tracking of pathogenic receptor expression of live cells using pyrenyl glycoanthraquinone-decorated graphene electrodes. Chem Sci 6(3):1996–2001.  https://doi.org/10.1039/C4SC03614J CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xie D, Feng X-Q, Hu X-L, Liu L, Ye Z, Cao J, Chen G-R, He X-P, Long Y-T (2016) Probing mannose-binding proteins that express on live cells and pathogens with a diffusion-to-surface ratiometric graphene electrosensor. ACS Appl Mater Interfaces 8(38):25137–25141.  https://doi.org/10.1021/acsami.6b08566 CrossRefPubMedGoogle Scholar
  17. 17.
    Wahiba M, Feng X-Q, Zang Y, James T-D, Li J, Chena G-R, He X-P (2016) A supramolecular pyrenyl glycoside-coated 2D MoS2 composite electrode for selective cell capture. Chem Commun 52(78):11689–11692.  https://doi.org/10.1039/C6CC06332B CrossRefGoogle Scholar
  18. 18.
    Norouzi B, Rajabi M (2017) Fabrication of poly(4-aminobenzoic acid/o-toluidine) modified carbon paste electrode and its electrocatalytic property to the oxidation of nitrite. J Anal Chem 72(8):897–903.  https://doi.org/10.1134/S106193481708010X CrossRefGoogle Scholar
  19. 19.
    Fu L, Yu S, Thompson L, Yu A (2015) Development of a novel nitrite electrochemical sensor by stepwise in situ formation of palladium and reduced graphene oxide nanocomposites. RSC Adv 5(50):40111–40116.  https://doi.org/10.1039/C5RA02661J CrossRefGoogle Scholar
  20. 20.
    Wan Y, Zheng YF, Yin HY, Song XC (2016) Au nanoparticle modified carbon paper electrode for an electrocatalytic oxidation nitrite sensor. New J Chem 40(4):3635–3641.  https://doi.org/10.1039/C5NJ02941D CrossRefGoogle Scholar
  21. 21.
    Zou C, Yang B, Bin D, Wang J, Li S, Yang P, Wang C, Shiraishi Y, Du Y (2017) Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J Colloid Interface Sci 488:135–141CrossRefGoogle Scholar
  22. 22.
    Ganesan V, John SA, Ramaraj R (2001) Multielectrochromic properties of methylene blue and phenosafranine dyes incorporated into Nafion® film. J Electroanal Chem 502(1):167–173.  https://doi.org/10.1016/S0022-0728(01)00354-0 CrossRefGoogle Scholar
  23. 23.
    Khoo SB, Chen F (2002) Studies of sol-gel ceramic film incorporating methylene blue on glassy carbon: an electrocatalytic system for the simultaneous determination of ascorbic and uric acids. Anal Chem 74(22):5734–5741.  https://doi.org/10.1021/ac0255882 CrossRefPubMedGoogle Scholar
  24. 24.
    Gholivand MB, Ahmadi E, Haseli M (2017) A novel voltammetric sensor for nevirapine, based on modified graphite electrode by MWCNs/poly(methylene blue)/gold nanoparticle. Anal Biochem 527:4–12.  https://doi.org/10.1016/j.ab.2017.03.018 CrossRefPubMedGoogle Scholar
  25. 25.
    Baghayeri M, Zare EN, Namadchian M (2013) Direct electrochemistry and electrocatalysis of hemoglobin immobilized on biocompatible poly(styrene-alternative-maleic acid)/functionalized multi-wall carbon nanotubes blends. Sensors Actuators B Chem 188:227–234.  https://doi.org/10.1016/j.snb.2013.07.028 CrossRefGoogle Scholar
  26. 26.
    Baghayeri M, Zare EN, Lakouraj MM (2015) Monitoring of hydrogen peroxide using a glassy carbon electrode modified with hemoglobin and a polypyrrole-based nanocomposite. Microchim Acta 182(3–4):771–779.  https://doi.org/10.1007/s00604-014-1387-2 CrossRefGoogle Scholar
  27. 27.
    Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130(4):421–426.  https://doi.org/10.1039/b414248a CrossRefGoogle Scholar
  28. 28.
    Dai L (2007) Electrochemical sensors based on architectural diversity of the π-conjugated structure: recent advancements from conducting polymers and carbon nanotubes. Aust J Chem 60(7):472–483.  https://doi.org/10.1071/CH06470 CrossRefGoogle Scholar
  29. 29.
    Zhao K, Song H, Zhuang S, Dai L, He P, Fang Y (2007) Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes. Electrochem Commun 9(1):65–70.  https://doi.org/10.1016/j.elecom.2006.07.001 CrossRefGoogle Scholar
  30. 30.
    Cui K, Song Y, Yao Y, Huang Z, Wang L (2008) A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochem Commun 10(4):663–667.  https://doi.org/10.1016/j.elecom.2008.02.016 CrossRefGoogle Scholar
  31. 31.
    Xu G-R, Xu G, Xu M-L, Zhang Z, Tian Y, Choi HN, Lee W-Y (2012) Amperometric determination of nitrite at poly(methylene blue)-modified glassy carbon electrode. Bull Kor Chem Soc 33(2):415–419.  https://doi.org/10.5012/bkcs.2012.33.2.415 CrossRefGoogle Scholar
  32. 32.
    Zhang M-L, Cao Z, He J-L, Xue L, Zhou Y, Long S, Deng T, Zhang L (2012) A simple gold plate electrode modified with Gd-doped TiO2 nanoparticles used for determination of trace nitrite in cured food. Food Addit Contam Part A 29(12):1938–1946.  https://doi.org/10.1080/19440049.2012.715762 CrossRefGoogle Scholar
  33. 33.
    Majidi MR, Saadatirad A, Alipour E (2013) Pencil lead electrode modified with hemoglobin film as a novel biosensor for nitrite determination. Electroanalysis 25(7):1742–1750.  https://doi.org/10.1002/elan.201300082 CrossRefGoogle Scholar
  34. 34.
    Üzer A, Sağlam Ş, Can Z, Erçağ E, Apak R (2016) Electrochemical determination of food preservative nitrite with gold nanoparticles/p-aminothiophenol-modified gold electrode. Int J Mol Sci 17(8):1253–1269.  https://doi.org/10.3390/ijms17081253 CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Chai R, Yuan R, Chai Y, Ou C, Cao S, Li X (2008) Amperometric immunosensors based on layer-by-layer assembly of gold nanoparticles and methylene blue on thiourea modified glassy carbon electrode for determination of human chorionic gonadotrophin. Talanta 74(5):1330–1336.  https://doi.org/10.1016/j.talanta.2007.08.046 CrossRefPubMedGoogle Scholar
  36. 36.
    Raj MA, Revin SB, John SA (2013) Synthesis, characterization and modification of functionalized pyrimidine stabilized gold nanoparticles on ITO electrode for the determination of tannic acid. Bioelectrochemistry 89:1–10.  https://doi.org/10.1016/j.bioelechem.2012.08.003 CrossRefPubMedGoogle Scholar
  37. 37.
    Braun WA, Horn BC, Hoehne L, Stülp S, Rosa MB, HilgemannI M (2017) Poly(methylene blue)-modified electrode for indirect electrochemical sensing of OH radicals and radical scavengers. An Acad Bras Ciênc 89(3):1381–1389.  https://doi.org/10.1590/0001-3765201720160833 CrossRefPubMedGoogle Scholar
  38. 38.
    Karyakin A, Strakhova A, Karyakina E, Varfolomeyev S, Yatsimirsky A (1993) The electrochemical polymerization of methylene blue and bioelectrochemical activity of the resulting film. Bioelectrochem Bioenerg 32(1):35–43.  https://doi.org/10.1016/0302-4598(93)80018-P CrossRefGoogle Scholar
  39. 39.
    Barsan MM, Pinto EM, Brett CM (2008) Electrosynthesis and electrochemical characterisation of phenazine polymers for application in biosensors. Electrochim Acta 53(11):3973–3982.  https://doi.org/10.1016/j.electacta.2007.10.012 CrossRefGoogle Scholar
  40. 40.
    Ma X, Miao T, Zhu W, Gao X, Wang C, Zhao C, Ma H (2014) Electrochemical detection of nitrite based on glassy carbon electrode modified with gold–polyaniline–graphene nanocomposites. RSC Adv 4(101):57842–57849.  https://doi.org/10.1039/C4RA08543D CrossRefGoogle Scholar
  41. 41.
    Yan Y, Zhang M, Gong K, Su L, Guo Z, Mao L (2005) Adsorption of methylene blue dye onto carbon nanotubes: a route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite. Chem Mater 17(13):3457–3463.  https://doi.org/10.1021/cm0504182 CrossRefGoogle Scholar
  42. 42.
    Zhang YQ, Yang XB, Wang ZX, Long J, Shao L (2017) Designing multifunctional 3D magnetic foam for effective insoluble oil separation and rapid selective dye removal for use in wastewater remediation. J Mater Chem A 5(16):7316–7325.  https://doi.org/10.1039/C6TA11252H CrossRefGoogle Scholar
  43. 43.
    Pogacean F, Socaci C, Pruneanu S, Biris AR, Coros M, Magerusan L, Katona G, Turcu R, Borodi G (2015) Graphene based nanomaterials as chemical sensors for hydrogen peroxide—a comparison study of their intrinsic peroxidase catalytic behavior. Sensors Actuators B Chem 213:474–483.  https://doi.org/10.1016/j.snb.2015.02.124 CrossRefGoogle Scholar
  44. 44.
    Giribabu K, Suresh R, Manigandan R, Munusamy S, Kumar SP, Muthamizh S, Narayanan V (2013) Nanomolar determination of 4-nitrophenol based on a poly(methylene blue)-modified glassy carbon electrode. Analyst 138(19):5811–5818.  https://doi.org/10.1039/c3an00941f CrossRefPubMedGoogle Scholar
  45. 45.
    Koyun O, Gursu H, Gorduk S, Sahin Y (2017) Highly sensitive electrochemical determination of dopamine with an overoxidized polypyrrole nanofiber pencil graphite electrode. Int J Electrochem Sci 12:6428–6444.  https://doi.org/10.20964/2017.07.41
  46. 46.
    Milczarek G (2007) Selective and sensitive detection of nitrite based on NO sensing on a polymer-coated rotating disc electrode. J Electroanal Chem 610(2):199–204.  https://doi.org/10.1016/j.jelechem.2007.07.017 CrossRefGoogle Scholar
  47. 47.
    Cui Y, Yang C, Zeng W, Oyama M, Pu W, Zhang J (2007) Electrochemical determination of nitrite using a gold nanoparticles-modified glassy carbon electrode prepared by the seed-mediated growth technique. Anal Sci 23(12):1421–1425.  https://doi.org/10.2116/analsci.23.1421 CrossRefPubMedGoogle Scholar
  48. 48.
    Huang X, Li Y, Chen Y, Wang L (2008) Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sensors Actuators B Chem 134(2):780–786.  https://doi.org/10.1016/j.snb.2008.06.028 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Arts and ScienceYildiz Technical UniversityIstanbulTurkey

Personalised recommendations