Advertisement

Ionics

, Volume 24, Issue 10, pp 3123–3131 | Cite as

Biomass carbon/polyaniline composite and WO3 nanowire-based asymmetric supercapacitor with superior performance

  • Haiping Wang
  • Guofu Ma
  • Yongchun Tong
  • Zirong Yang
Original Paper

Abstract

The demand for advanced energy storage devices such as supercapacitors and lithium-ion batteries has been increasing to meet the application requirements of hybrid vehicles and renewable energy systems. Here, high energy density aqueous asymmetric supercapacitor (ASC) is assembled based on chestnut shell-based activated carbon (CAC)/PANI composite positive electrode and tungsten trioxide (WO3) nanowires negative electrode. The CAC/PANI composite and WO3 nanowires were synthesized through an interfacial polymerization method and a simple sodium sulfate assisted hydrothermal process, respectively. The CAC/PANI//WO3 ASC device operates with a voltage of 1.5 V in 1 M H2SO4 electrolyte and achieved a high energy density of 15.4 Wh kg−1 at a power density of 252 W kg−1. Furthermore, the device shows an excellent cycling performance with capacitance retention of 83% after 1500 cycles.

Keywords

Chestnut shell Polyaniline Tungsten trioxide Asymmetric supercapacitor 

Notes

Acknowledgements

The research was financially supported by the Science and Technology Program of Gansu Province (NO.1308RJZA295, 1308RJZA265), the National Science Foundation of China (NO.21164009, 21174114), the program for Changjiang Scholars and Innovative Research Team in University (IRT1177), Key Laboratory of Eco-Environment-Related Polymer Materials (Northwest Normal University) of Ministry of Education, and Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Environmental Science, Lanzhou City University.

References

  1. 1.
    Li Z, Xu Z, Wang H, Ding J, Zahiri B, Holt CMB, Tan X, Mitlin D (2014) Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ Sci 7(5):1708–1718.  https://doi.org/10.1039/C3EE43979H CrossRefGoogle Scholar
  2. 2.
    Zhang L, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531.  https://doi.org/10.1039/b813846j CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhao D, Bao S, Zhou W, Li H (2007) Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem Commun 9(5):869–874.  https://doi.org/10.1016/j.elecom.2006.11.030 CrossRefGoogle Scholar
  4. 4.
    Zhu T, Chen J, Lou X (2010) Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. J Mater Chem 20(33):7015–7020.  https://doi.org/10.1039/c0jm00867b CrossRefGoogle Scholar
  5. 5.
    Kennedy RD, Krungleviciute V, Clingerman DJ, Mondloch JE, Peng Y, Wilmer CE, Farha OK (2013) Carborane-based metal-organic framework with high methane and hydrogen storage capacities. Chem Mater 25(17):3539–3543.  https://doi.org/10.1021/cm4020942 CrossRefGoogle Scholar
  6. 6.
    Wang Y, Wang Z, Xia Y (2005) An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim Acta 50(28):5641–5646.  https://doi.org/10.1016/j.electacta.2005.03.042 CrossRefGoogle Scholar
  7. 7.
    Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN, Hatori H, Yumura M, Iijima S, Hata K (2010) Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv Mater 22:235–241CrossRefGoogle Scholar
  8. 8.
    Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541.  https://doi.org/10.1126/science.1200770 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Qu Q, Shi Y, Li L, Guo W, Wu Y, Zhang H, Guan S, Holze R (2009) V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution. Electrochem Commun 11(6):1325–1328.  https://doi.org/10.1016/j.elecom.2009.05.003 CrossRefGoogle Scholar
  10. 10.
    El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330.  https://doi.org/10.1126/science.1216744 CrossRefPubMedGoogle Scholar
  11. 11.
    Luo J, Chen L, Zhao Y, He P, Xia Y (2009) The effect of oxygen vacancies on the structure and electrochemistry of LiTi2(PO4)3 for lithium-ion batteries: a combined experimental and theoretical study. J Power Sources 194(2):1075–1080.  https://doi.org/10.1016/j.jpowsour.2009.06.050 CrossRefGoogle Scholar
  12. 12.
    Yoshino A (2004) Hybrid (asymmetric) capacitor. Electrochemistry 72:716–719Google Scholar
  13. 13.
    Li D, Zhu D, Zhou W, Zhou Q, Wang T, Ye G, Lu L, Xu J (2017) Design and electrosynthesis of monolayered MoS2 and BF4-doped poly (3, 4-ethylenedioxythiophene) nanocomposites for enhanced supercapacitive performance. J Electroanal Chem 801:345–353.  https://doi.org/10.1016/j.jelechem.2017.08.012 CrossRefGoogle Scholar
  14. 14.
    Zhang SW, Yin BS, Liu C, Wang ZB, Gu DM (2017) Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/PPy core-shell heterostructured nanobelts for supercapacitor. Chem Eng J 312:296–305.  https://doi.org/10.1016/j.cej.2016.11.144 CrossRefGoogle Scholar
  15. 15.
    Zhou Q, Zhu D, Ma X, Xu J, Zhou W, Zhao F (2016) High-performance capacitive behavior of layered reduced graphene oxide and polyindole nanocomposite materials. RSC Adv 6(35):29840–29847.  https://doi.org/10.1039/C5RA27375G CrossRefGoogle Scholar
  16. 16.
    Ryu KS, Kim KM, Park NG, Park YJ, Chang SHJ (2002) Symmetric redox supercapacitor with conducting polyaniline electrodes. J Power Sources 103(2):305–309.  https://doi.org/10.1016/S0378-7753(01)00862-X CrossRefGoogle Scholar
  17. 17.
    Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868.  https://doi.org/10.1021/nl102661q CrossRefPubMedGoogle Scholar
  18. 18.
    Ertas M, Walczak RM, Das RK, Rinzler AG, Reynolds JR (2012) Supercapacitors based on polymeric dioxypyrroles and single walled carbon nanotubes. Chem Mater 24(3):433–443.  https://doi.org/10.1021/cm201110t CrossRefGoogle Scholar
  19. 19.
    Frackowiak E, Khomenko V, Jurewicz K, Lota K, Béguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153(2):413–418.  https://doi.org/10.1016/j.jpowsour.2005.05.030 CrossRefGoogle Scholar
  20. 20.
    Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22(4):1392–1401.  https://doi.org/10.1021/cm902876u CrossRefGoogle Scholar
  21. 21.
    Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12.  https://doi.org/10.1016/j.jpowsour.2010.06.084 CrossRefGoogle Scholar
  22. 22.
    Fan W, Zhang C, Jiu WW, Pramoda KP, He C, Liu T (2013) Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl Mater Interfaces 5(8):3382–3391.  https://doi.org/10.1021/am4003827 CrossRefPubMedGoogle Scholar
  23. 23.
    Granqvist CG (2006) Electrochromic materials: out of a niche. Nat Materials 5(2):89–90.  https://doi.org/10.1038/nmat1577 CrossRefPubMedGoogle Scholar
  24. 24.
    Niklasson GA, Granqvist CG (2007) Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem 17(2):127–156.  https://doi.org/10.1039/B612174H CrossRefGoogle Scholar
  25. 25.
    Shibuya M, Miyauchi M (2009) Site-selective deposition of metal nanoparticles on aligned WO3 nanotrees for super-hydrophilic thin films. Adv Mater 21(13):1373–1376.  https://doi.org/10.1002/adma.200802918 CrossRefGoogle Scholar
  26. 26.
    Heidari EK, Zamani C, Marzbanrad E, Raissi B, Nazarpour S (2010) WO3-based NO2 sensors fabricated through low frequency AC electrophoretic deposition. Sensors Actuators B Chem 146(1):165–170.  https://doi.org/10.1016/j.snb.2010.01.073 CrossRefGoogle Scholar
  27. 27.
    Zheng H, Ou JZ, Strano MS, Kalantar-zadeh K (2011) Nanostructured tungsten oxide-properties, synthesis, and applications. Adv Funct Mater 21(12):2175–2196.  https://doi.org/10.1002/adfm.201002477 CrossRefGoogle Scholar
  28. 28.
    Samu GF, Pencz K, Janáky C, Rajeshwar J (2015) On the electrochemical synthesis and charge storage properties of WO3/polyaniline hybrid nanostructures. J Solid State Electr 19(9):2741–2751.  https://doi.org/10.1007/s10008-015-2820-0 CrossRefGoogle Scholar
  29. 29.
    Wang F, Zhan X, Cheng Z, Wang Z, Wang Q, Xu K, Safdar M, He J (2015) Tungsten oxide@polypyrrole core-shell nanowires arrays as novel negative electrodes for asymmetric supercapacitors. Small 11(6):749–755.  https://doi.org/10.1002/smll.201402340 CrossRefPubMedGoogle Scholar
  30. 30.
    Sun P, Deng Z, Yang P, Yu X, Chen Y, Liang Z, Meng H, Xie W, Tan S, Mai W (2015) Freestanding CNT-WO3 hybrid electrodes for flexible asymmetric supercapacitors. J Mater Chem A 3(22):12076–12080.  https://doi.org/10.1039/C5TA02316E CrossRefGoogle Scholar
  31. 31.
    Ma G, Wang H, Sun K, Peng H, Wu Y, Lei Z (2015) A multi-level structure bio-carbon composite with polyaniline for high performance supercapacitors. RSC Adv 5(16):12230–12236.  https://doi.org/10.1039/C4RA09964H CrossRefGoogle Scholar
  32. 32.
    Li Y, Zhao X, Xu Q, Zhang Q, Chen D (2011) Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Langmuir 27(10):6458–6463.  https://doi.org/10.1021/la2003063 CrossRefPubMedGoogle Scholar
  33. 33.
    Li L, Raji ARO, Fei H, Yang Y, Samuel EL, Tour JM (2013) Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl Mater Interfaces 5(14):6622–6627.  https://doi.org/10.1021/am4013165 CrossRefPubMedGoogle Scholar
  34. 34.
    Li J, Liu X, Han Q, Yao X, Wang X (2013) Formation of WO3 nanotube-based bundles directed by NaHSO4 and its application in water treatment. J Mater Chem A 1(4):1246–1253.  https://doi.org/10.1039/C2TA00382A CrossRefGoogle Scholar
  35. 35.
    Xu J, Wang K, Zu SZ, Han BH, Wei Z (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4(9):5019–5026.  https://doi.org/10.1021/nn1006539 CrossRefPubMedGoogle Scholar
  36. 36.
    Tan Q, Xu Y, Yang J, Qiu L, Chen Y, Chen X (2013) Preparation and electrochemical properties of the ternary nanocomposite of polyaniline/activated carbon/TiO2 nanowires for supercapacitors. Electrochim Acta 88:526–529.  https://doi.org/10.1016/j.electacta.2012.10.126 CrossRefGoogle Scholar
  37. 37.
    Wang Y, Li H, Xia Y (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18(19):2619–2623.  https://doi.org/10.1002/adma.200600445 CrossRefGoogle Scholar
  38. 38.
    Farsi H, Gobal F, Barzgari Z (2013) A study of hydrated nanostructured tungsten trioxide as an electroactive material for pseudocapacitors. Ionics 19(2):287–294.  https://doi.org/10.1007/s11581-012-0726-8 CrossRefGoogle Scholar
  39. 39.
    Raymundo-Piñero E, Leroux F, Béguin F (2006) A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv Mater 18(14):1877–1882.  https://doi.org/10.1002/adma.200501905 CrossRefGoogle Scholar
  40. 40.
    Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21(12):2366–2375.  https://doi.org/10.1002/adfm.201100058 CrossRefGoogle Scholar
  41. 41.
    Wang JG, Yang Y, Huang ZH, Kang F (2013) A high-performance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes. Carbon 61:190–199.  https://doi.org/10.1016/j.carbon.2013.04.084 CrossRefGoogle Scholar
  42. 42.
    Peng H, Ma G, Sun K, Mu J, Luo M, Lei Z (2014) High-performance aqueous asymmetric supercapacitor based on carbon nanofibers network and tungsten trioxide nanorod bundles electrodes. Electrochim Acta 147:54–61.  https://doi.org/10.1016/j.electacta.2014.09.100 CrossRefGoogle Scholar
  43. 43.
    Fan LQ, Zhong J, Wu JH, Lin JM, Huang YF (2014) Improving the energy density of quasi-solid-state electric double-layer capacitors by introducing redox additives into gel polymer electrolytes. J Mater Chem A 2(24):9011–9014.  https://doi.org/10.1039/c4ta01408a CrossRefGoogle Scholar
  44. 44.
    Chang J, Jin M, Yao F, Kim TH, Le VT, Yue H, Gunes F, Li B, Ghosh A, Xie S, Lee YH (2013) Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater 23(40):5074–5083.  https://doi.org/10.1002/adfm201301851 CrossRefGoogle Scholar
  45. 45.
    Lee JS, Shin DH, Jang J (2015) Polypyrrole-coated manganese dioxide with multiscale architectures for ultrahigh capacity energy storage. Energy Environ Sci 8(10):3030–3039.  https://doi.org/10.1039/C5EE02076J CrossRefGoogle Scholar
  46. 46.
    Noh J, Yoon CM, Kim YK, Jang J (2017) High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3. Carbon 116:470–478.  https://doi.org/10.1016/j.carbon.2017.02.033 CrossRefGoogle Scholar
  47. 47.
    Ling Z, Wang Z, Zhang M, Yu C, Wang G, Dong Y, Liu S, Wang Y, Qiu J (2016) Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater 26(1):111–119.  https://doi.org/10.1002/adfm.201504004 CrossRefGoogle Scholar
  48. 48.
    Yun YS, Cho SY, Shim J, Kim BH, Chang SJ, Baek SJ, Jin HJ (2013) Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv Mater 25(14):1993–1998.  https://doi.org/10.1002/adma.201204692 CrossRefPubMedGoogle Scholar
  49. 49.
    Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of grapheme-MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833.  https://doi.org/10.1016/j.carbon.2010.06.047 CrossRefGoogle Scholar
  50. 50.
    Yang X, Zhang F, Zhang L, Zhang T, Huang Y, Chen Y (2013) A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications. Adv Funct Mater 23(26):3353–3360.  https://doi.org/10.1002/adfm.201203556 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Haiping Wang
    • 1
  • Guofu Ma
    • 2
  • Yongchun Tong
    • 1
  • Zirong Yang
    • 1
  1. 1.College of Chemistry and Chemical EngineeringHexi UniversityZhangyeChina
  2. 2.Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouChina

Personalised recommendations