Skip to main content
Log in

Metastable and stable pitting events at zinc passive layer in alkaline solutions

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The electrochemical behavior of Zn in 0.5 M NaOH solutions containing various concentrations (0.01–0.1 M) of ClO3 or ClO4 anions was studied with potentiodynamic anodic polarization and chronoamperometry techniques. Microstructural and topographical characterization of the pitted surfaces was carried out by ex situ scanning electron microscopy and atomic force microscopy examinations. Addition of either ClO3 or ClO4 stimulated general corrosion and ruptured the passive layer (stable pitting), with ClO3 being more aggressive than ClO4 . Metastable pitting events appear as current oscillations (spikes) at potentials close to the pitting potential when Cl ions are produced by cathodic reduction of ClO3 and ClO4 before passive layer growth. Current–time measurements are performed at fixed potential after production of Cl ions and show that the rate of metastable pitting and the intensity of current spikes increase with the potential and the concentration of aggressive anions. Concepts of thin film growth are applied to the passive layer formation in order to explain those results. Metastable events are related to the presence of defects in the passive layer because their frequency and intensity are enhanced in conditions that favor defect formation and roughening in growing films, while stable pitting typically occurs at regions of high metal disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pistorius PC, Burstein GT (1994) Corros Sci 36:525

    Article  CAS  Google Scholar 

  2. Hashimoto M, Miyajima S, Murata T (1992) Corros Sci 33:885

    Article  CAS  Google Scholar 

  3. Gonzalez-Garcia Y, Burstein GT, Gonzalez S, Souto RM (2004) Electrochem Commun 6:637

    Article  CAS  Google Scholar 

  4. Trueman AR (2005) Corros Sci 47:2240

    Article  CAS  Google Scholar 

  5. Amin MA, Hassan HH, Hazzazi OA, Qhatani MM (2008) J Appl Electrochem 38:1589

    Article  CAS  Google Scholar 

  6. Amin MA (2009) Electrochim Acta 54:1857

    Article  CAS  Google Scholar 

  7. Gupta RK, Sukiman NL, Cavanaugh MK, Hinton BRW, Hutchinson CR, Birbilis N (2012) Electrochim Acta 66:245

    Article  CAS  Google Scholar 

  8. Jiang Z, Norby T, Middleton H (2010) Corros Sci 52:3158

    Article  CAS  Google Scholar 

  9. Speckert L, Burstein GT (2011) Corros Sci 53:534

    Article  CAS  Google Scholar 

  10. Cavanaugh MK, Birbilis N, Buchheit RG (2012) Electrochim Acta 59:336

    Article  CAS  Google Scholar 

  11. Williams DE, Westcott C, Fleischmann M (1985) J Electrochem Soc 132:1796

    Article  CAS  Google Scholar 

  12. Williams DE, Stewart J, Balkwill PH (1994) Corros Sci 36:1213

    Article  CAS  Google Scholar 

  13. Contreras G, Goidanich S, Maggi S, Piccardi C, Diamanti MV, Pedeferri MP, Lazzari L (2011) Corros Rev 29:241

    Article  CAS  Google Scholar 

  14. Souto RM, González-García Y, Battistel D, Daniele S (2012) Chem Eur J 18:230

    Article  CAS  Google Scholar 

  15. Abd El Rehim SS, El-Sherbini EEF, Amin MA (2003) J Electroanal Chem 560:175–182

    Article  CAS  Google Scholar 

  16. Amin MA (2005) Electrochim Acta 50:1265–1274

    Article  CAS  Google Scholar 

  17. Amin MA, Hassan HH, Abd El Rehim SS (2008) Electrochim Acta 53:2600–2609

    Article  CAS  Google Scholar 

  18. El-Rehim SSA, Hamed E, Shaltot AM, Amin MA (2012) Z Phys Chem 226:59

    Article  Google Scholar 

  19. Shang X-L, Zhang B, Han E-H, Ke W (2012) Electrochim Acta 65:294

    Article  CAS  Google Scholar 

  20. Zheng R, Janssens A, Carmeliet J, Bogaerts W, Hens H (2011) J Build Phys 34:277

    Article  CAS  Google Scholar 

  21. Chen Y, Lobo RFM, Santos DMF, Sequeira CAC (2009) Quim Nova 32:387

    Article  CAS  Google Scholar 

  22. El Aal EEA, El Wanees SA (2009) Corros Sci 51:1780

    Article  Google Scholar 

  23. Amin MA, Abd El-Rehim SS (2012) Int J Electrochem Sci 7:7600

    CAS  Google Scholar 

  24. Macdonald DD (1992) J Electrochem Soc 139:3434

    Article  CAS  Google Scholar 

  25. Macdonald DD (1999) Pure Appl Chem 71:951

    Article  CAS  Google Scholar 

  26. Haruna T, Macdonald DD (1997) J Electrochem Soc 144:1574

    Article  CAS  Google Scholar 

  27. Maurice V, Klein LH, Marcus P (2001) Electrochem Solid-State Lett 4:B1

    Article  CAS  Google Scholar 

  28. Kunze J, Maurice V, Klein LH, Strehblow H-H, Marcus P (2001) J Phys Chem B 105:4263

    Article  CAS  Google Scholar 

  29. Toney MF, Davenport AJ, Oblonsky LJ, Ryan MP, Vitus CM (1997) Phys Rev Lett 79:4282

    Article  CAS  Google Scholar 

  30. Maurice V, Marcus P (2012) Electrochem Acta 84:129

    Article  CAS  Google Scholar 

  31. Ohring M (1992) The materials science of thin films. Academic, London

    Google Scholar 

  32. Pimpinelli A, Villain J (1998) Physics of crystal growth. Cambridge University Press, Cambridge

    Book  Google Scholar 

  33. Lide DR (1999) CRC handbook of chemistry and physics, 80th edn. CRC, Boca Raton, p 8

    Google Scholar 

  34. D’Alkaine CV, Boucherit MN (1997) J Electrochem Soc 144:3331

    Article  Google Scholar 

  35. Pagitsas M, Pavlidou M, Sazou D (2008) Electrochim Acta 53:4784

    Article  CAS  Google Scholar 

  36. Pagitsas M, Pavlidou M, Papadopoulou S, Sazou D (2007) Chem Phys Lett 434:63

    Article  CAS  Google Scholar 

  37. Prinz H, Strehblow H-H (1998) Corros Sci 40:1671

    Article  CAS  Google Scholar 

  38. Lee C, Batchelor B, Park SH, Han DS, Abdel-Wahab A, Kramer TA (2011) J Hazard Mater 197:183

    Article  CAS  Google Scholar 

  39. Bohni H (1987) Langmiur 3:924

    Article  Google Scholar 

  40. Frankel GS, Newman RG (1992) Critical factors in localized corrosion. The Electrochemical Society, Pennington

    Google Scholar 

  41. Aarao Reis FDA, Stafiej J, Badiali J-P (2006) J Phys Chem B 110:17554

    Article  CAS  Google Scholar 

  42. Shibata T (1990) Corros Sci 31:413

    Article  CAS  Google Scholar 

  43. Williams DE, Westcott C, Fleischmann M (1985) J Electrochem Soc 132:1804

    Article  CAS  Google Scholar 

  44. Metikos-Hukovic M (1992) J Appl Electrochem 22:448

    Article  CAS  Google Scholar 

  45. Kolics A, Polkinghorne JC, Wieckowski A (1998) Electrochim Acta 43:3605

    Article  Google Scholar 

  46. Amin MA, Abd El-Rehim SS, El-Sherbini EEF, Mahmoud SR, Abbas MN (2009) Electrochim Acta 54:4288–4296

    Article  CAS  Google Scholar 

  47. Galvele JR (1976) J Electrochem Soc 123:464

    Article  CAS  Google Scholar 

  48. Budiansky ND, Hudson JL, Scully JR (2004) J Electrochem Soc 151:B233

    Article  CAS  Google Scholar 

  49. Chame A, Aarão Reis FDA (2004) Surf Sci 553:145

    Article  CAS  Google Scholar 

  50. O’Grady WE, Roeper DF, Natishan PM (2011) J Phys Chem C 115:25298

    Article  Google Scholar 

  51. Conrad BR, Gomar-Nadal E, Cullen WG, Pimpinelli A, Einstein TL, Williams ED (2008) Phys Rev B 77:205328

    Article  Google Scholar 

  52. Sathiyanarayanan R, Hamouda ABH, Pimpinelli A, Einstein TL (2011) Phys Rev B 83:35424

    Article  Google Scholar 

  53. Aarao Reis FDA (2003) Phys Rev B 68:041602

    CAS  Google Scholar 

  54. Córdoba-Torres P, Bar-Eli K, Fairén V (2004) J Electroanal Chem 571:189

    Article  Google Scholar 

  55. Evans JW, Thiel PA, Bartelt MC (2006) Surf Sci Rep 61:1

    Article  CAS  Google Scholar 

  56. Córdoba-Torres P (2007) Phys Rev B 75:115405

    Article  Google Scholar 

  57. Córdoba-Torres P, Nogueira RP (2008) Electrochim Acta 53:4805

    Article  Google Scholar 

  58. Pistorius PC, Burstein GT (1992) Philos Trans R Soc Lond A 341:531

    Article  CAS  Google Scholar 

  59. Burstein GT, Liu C, Souto RM, Vines SP (2005) Corros Eng Sci Technol 39:25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Amin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amin, M.A., Abd El-Rehim, S.S., Aarão Reis, F.D.A. et al. Metastable and stable pitting events at zinc passive layer in alkaline solutions. Ionics 20, 127–136 (2014). https://doi.org/10.1007/s11581-013-0953-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0953-7

Keywords

Navigation