Advertisement

Ionics

, Volume 19, Issue 8, pp 1145–1153 | Cite as

Electrical and structural study of new antimony iodide-doped silver sulfate electrolytes

  • S. Austin SuthanthirarajEmail author
  • R. Sarumathi
Original Paper
  • 170 Downloads

Abstract

This paper deals with the preparation and ion transport characteristics of a series of compositions in the solid-state mixed system [(SbI3)100 − x –(Ag2SO4) x ] where x = 10, 20, 30, 40, 50, 60, 70, 80, and 90 mol%, respectively. These samples have been characterized by powder X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, ionic transport number, and impedance spectroscopic measurements. Among various compositions investigated, significant ones have possessed AgI as one of the constituent phases. Detailed electrical conductivity studies have shown that the observed ionic conductivity attains a maximum value of 2.1 × 10−3 S cm−1 at room temperature (298 K) for the typical composition containing x = 60 mol%, whereas the corresponding values of transport number of silver ion as determined by Wagner’s and EMF methods are found to be nearly unity. Interestingly, the enhanced ionic conduction of the chosen composite system may be attributed to the feasibility of formation of AgI in several compositions as a consequence of ion exchange reaction between SbI3 and Ag2SO4.

Keywords

Antimony iodide Silver sulfate Ionic conductor Phase transition X-ray diffraction analysis 

Notes

Acknowledgments

We thankfully acknowledge the DSC facility provided by SAIF-IITM and the SEM facility provided by National Centre for Nanoscience and Nanotechnology, University of Madras.

References

  1. 1.
    Dell RM (2000) Solid State Ionics 134:139–158CrossRefGoogle Scholar
  2. 2.
    Hassan M, Noman A, Al-hakimi, Rafinddin (2011) Arabian J Chem 4:45–49CrossRefGoogle Scholar
  3. 3.
    Bruce PG (1995) Solid state electrochemistry. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Chowdari BVR, Radhakrishna S (1986) Materials for sold state batteries. World Scientific, SingaporeGoogle Scholar
  5. 5.
    Renard C, Coqel G, Bychkov E (2002) Solid State Ionics 154:749–757CrossRefGoogle Scholar
  6. 6.
    Durga Rani AN, Hariharan K (1996) Mater Chem Phys 43:243–249CrossRefGoogle Scholar
  7. 7.
    Viswanathan A, Suthanthiraraj SA (1992) Solid State Ionics 58:89–96CrossRefGoogle Scholar
  8. 8.
    Suthanthiraraj SA, Vinod M (2005) Indian J Phys 79:753–756Google Scholar
  9. 9.
    Suthanthiraraj SA, Ganeshkumar AC (2003) Mater Sci Eng B100:156–162Google Scholar
  10. 10.
    Viswanathan A, Suthanthiraraj SA (1993) Mater Res Bull 28:821–828CrossRefGoogle Scholar
  11. 11.
    Suthanthiraraj SA, Sarumathi R (2012) Appl Nanosci. doi: 101007/s13204-012-0155
  12. 12.
    Suthanthiraraj SA, Sarojini S (2012) Chem Sci Trans 1:13–22CrossRefGoogle Scholar
  13. 13.
    Suthanthiraraj SA, Shankaran VS (2012) Ionics. doi: 10.1007/s11581-012-0804-y
  14. 14.
    JCPDS-International Centre for Diffraction data (1983) Selected powder diffraction data for forensic materials: search manual, JCPDS International Centre for Diffraction Data, Pennsylvania (JCPDS file no.00-009 0399) p 430Google Scholar
  15. 15.
    JCPDS-International Centre for Diffraction data (1983) Selected powder diffraction data for forensic materials: search manual, JCPDS International Centre for Diffraction Data, Pennsylvania (JCPDS file no.00-009 0374) p 410Google Scholar
  16. 16.
    Takahashi T (1973) J App Electochem 3:79–90CrossRefGoogle Scholar
  17. 17.
    Wasiucionek M, Galazka K, Garbarczyk JE, Nowinski JL, Gierlotka S, Palosz B (2011) Solid State Ionics 192:113–117CrossRefGoogle Scholar
  18. 18.
    Anwane SW (2012) Adv Mat Lett 3:204–212CrossRefGoogle Scholar
  19. 19.
    Tarte P, Rulmont A (1990) Solid State Ionics 42:177–196CrossRefGoogle Scholar
  20. 20.
    Shi JY, Yi CW, Liang L, Kim K (2010) Bull Korean Chem Soc 31:309–314CrossRefGoogle Scholar
  21. 21.
    Macdonald JR (ed) (1987) Impedance spectroscopy. Wiley, New York, pp 12–23Google Scholar
  22. 22.
    Hema M, Selvasekerapandian S, Hirankumar G, Sakunthala A, Arunkumar D, Nithya H (2009) J Phys Chem Solids 70:1098–1103CrossRefGoogle Scholar
  23. 23.
    Chandrasekhar VG, Suthanthiraraj SA (1993) Solid State Ionics 62:61–67CrossRefGoogle Scholar
  24. 24.
    Seydei MKP, Suthanthiraraj SA (1993) Bull Electrochem 9:313–315Google Scholar
  25. 25.
    Seydei MKP, Suthanthiraraj SA (1993) J Mater Sci 28:3519–3522CrossRefGoogle Scholar
  26. 26.
    Kawamura J, Shimoji M (1989) Mater Chem Phys 23:99–120CrossRefGoogle Scholar
  27. 27.
    Pearson RG (1963) J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of EnergyUniversity of Madras, Maraimalai (Guindy) CampusChennaiIndia
  2. 2.Department of ChemistryQueen Mary’s CollegeChennaiIndia

Personalised recommendations