Advertisement

Mathematics and Financial Economics

, Volume 13, Issue 3, pp 429–458 | Cite as

Bubbles in assets with finite life

  • Henri Berestycki
  • Cameron Bruggeman
  • Regis Monneau
  • José A. ScheinkmanEmail author
Article
  • 42 Downloads

Abstract

We study the speculative value of a finitely lived asset when investors disagree and short sales are limited. In this case, investors are willing to pay a speculative value for the resale option they obtain when they acquire the asset. Using martingale arguments, we characterize the equilibrium speculative value as a solution to a fixed point problem for a monotone operator \(\mathbb F\). A Dynamic Programming Principle applies and is used to show that the minimal solution to the fixed-point problem is a viscosity solution of a naturally associated (non-local) obstacle problem. Combining the monotonicity of the operator \({\mathbb {F}}\) and a comparison principle for viscosity solutions to the obstacle problem we obtain several comparison of solution results. We also use a characterization of the exercise boundary of the obstacle problem to study the effect of an increase in the costs of transactions on the value of the bubble and on the volume of trade, and in particular to quantify the effect of a small transaction (Tobin) tax.

Keywords

Asset-price bubble Finitely-lived financial asset Heterogeneous beliefs Non-local free boundary problem Dynamic programming Stochastic control 

JEL Classifications

G1 G12 G14 G18 

Notes

References

  1. 1.
    Barles, G., Perthame, B.: Discontinuous solutions of deterministic optimal stopping time problems. Modélisation mathématique et analyse numérique 21(4), 557–579 (1987)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Berestycki, H., Monneau, R., Scheinkman, J.A.: A non local free boundary problem arising in a theory of financial bubbles. Philos. Trans. A 372, 20130404 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bouchard, B.: Introduction to Stochastic Control of Mixed Diffusion Processes, Viscosity Solutions and Applications in Finance and Insurance. Lecture Notes (2007)Google Scholar
  4. 4.
    Carlos, A., Neal, L., Wandschneider, K.: Dissecting the Anatomy of Exchange Alley: The Dealings of Stockjobbers During and After the South Sea Bubble. Unpublished paper, University of Illinois (2010)Google Scholar
  5. 5.
    Chen, X., Kohn, R.V.: Asset price bubbles from heterogeneous beliefs about mean reversion rates. Finance Stoch. 15(2), 221–241 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cochrane, J.H.: Stocks as Money: Convenience Yield and the Tech-Stock Bubble. Tech. rep, NBER (2002)Google Scholar
  7. 7.
    Dumas, B., Kurshev, A., Uppal, R.: Equilibrium portfolio strategies in the presence of sentiment risk and excess volatility. J. Finance 64(2), 579–629 (2009)CrossRefGoogle Scholar
  8. 8.
    Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1993)zbMATHGoogle Scholar
  9. 9.
    Harrison, J.M., Kreps, D.M.: Speculative investor behavior in a stock market with heterogeneous expectations. Q. J. Econ. 92(2), 323–336 (1978)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hong, H., Stein, J.C.: Disagreement and the stock market. J. Econ. Perspect. 21, 109–128 (2007)CrossRefGoogle Scholar
  11. 11.
    Lamont, O.A., Thaler, R.H.: Can the market add and subtract? Mispricing in stock markets carve-outs. J. Polit. Econ. 111(2), 227–268 (2003)CrossRefGoogle Scholar
  12. 12.
    Ofek, E., Richardson, M.: Dotcom mania: the rise and fall of internet stock prices. J. Finance 58(3), 1113–1138 (2003)CrossRefGoogle Scholar
  13. 13.
    Peskir, G., Shiryaev, A.N.: Optimal Stopping and Free-Boundary Problems. Springer, Berlin (2006)zbMATHGoogle Scholar
  14. 14.
    Protter, P.: A mathematical theory of financial bubbles. In: Henderson, V., Sircar, R. (eds.) Paris-Princeton Lectures on Mathematical Finance 2013, pp. 1–108. Springer, Berlin (2013)Google Scholar
  15. 15.
    Scheinkman, J.A.: Speculation, Trading, and Bubbles. Columbia University Press, New York City (2014)CrossRefGoogle Scholar
  16. 16.
    Scheinkman, J.A., Xiong, W.: Overconfidence and speculative bubbles. J. Polit. Econ. 111(6), 1183–1220 (2003)CrossRefGoogle Scholar
  17. 17.
    Shiryaev, A.N.: Optimal Stopping Rules, vol. 8. Springer, Berlin (2007)zbMATHGoogle Scholar
  18. 18.
    Weil, P.: On the possibility of price decreasing bubbles. Econometrica 58(6), 1467–1474 (1990)CrossRefzbMATHGoogle Scholar
  19. 19.
    Xiong, W., Jialin, Y.: The Chinese warrants bubble. Am. Econ. Rev. 101, 2723–2753 (2011)CrossRefGoogle Scholar
  20. 20.
    Zariphopoulou, T.: Consumption-investment models with constraints. SIAM J. Control Optim. 32(1), 59–85 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Henri Berestycki
    • 1
  • Cameron Bruggeman
    • 2
  • Regis Monneau
    • 3
  • José A. Scheinkman
    • 4
    • 5
    • 6
    Email author
  1. 1.École des hautes études en sciences sociales, CNRS, Centre d’analyse et mathématique socialesPSL UniversityParisFrance
  2. 2.Lyft Inc.San FranciscoUSA
  3. 3.CERMICS, Ecole des Ponts ParisTechUniversité Paris-EstMarne-la-ValléeFrance
  4. 4.Columbia UniversityNew York CityUSA
  5. 5.Princeton UniversityPrincetonUSA
  6. 6.NBERCambridgeUSA

Personalised recommendations