Advertisement

Mathematics and Financial Economics

, Volume 13, Issue 1, pp 31–65 | Cite as

Nonlinear equity valuation using conic finance and its regulatory implications

  • Dilip B. MadanEmail author
Article

Abstract

Economic enterprises are modeled to have the return distributions of pure jump limit laws. Specifically the four parameters of a bilateral gamma process synthesize the up and down moves in returns with differing mean and variance rates for the two motions. Prudential capital assessments value a distant terminal payout defined by the accumulated returns. The valuation incorporates risk charges based on measure distortions that generalize the concept of distorted expectations. Particular risk charges are calibrated to data on S&P 500 index options and their associated time series. On the other hand regulatory capital evaluates extreme loss levels possible over a short time interval. For equity market returns the two calculations yield comparable magnitudes displaying enterprises with both sufficient and insufficient capital. Enterprises invested in Treasury bonds have regulatory capital requirements that are well below their prudential capital levels for long positions. Short positions may have insufficient prudential capital values relative to their regulatory counterparts. The additional prudential and regulatory capital costs of leveraged positions are illustrated. Hedge funds reflect high levels of prudential capital associated with low levels of required regulatory capital reflecting the access of good drifts at low risk levels.

Keywords

Bilateral gamma process Measure distortion Nonlinear expectation Value at risk 

JEL Classification

G10 G13 G32 

References

  1. 1.
    Acerbi, C., Tasche, D.: On the coherence of expected shortfall. J. Bank. Finance 26, 1487–1503 (2002)CrossRefGoogle Scholar
  2. 2.
    Artzner, P., Delbaen, F., Eber, M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Basel III: A Global Regulatory Framework for more Resilient Banks and Banking Systems, Bank for International Settlements Communications. Basel, Switzerland (2010)Google Scholar
  5. 5.
    Carr, P., Geman, H., Madan, D., Yor, M.: Self-decomposability and option pricing. Math. Finance 17, 31–57 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cherny, A., Madan, D.B.: New measures for performance evaluation. Rev. Financ. Stud. 22, 2571–2606 (2009)CrossRefGoogle Scholar
  7. 7.
    Cherny, A., Madan, D.B.: Markets as a counterparty: an introduction to conic finance. Int. J. Theor. Appl. Finance 13, 1149–1177 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cohen, S., Elliott, R.J.: A general theory of backward finite state difference equations. Stoch. Process. Appl. 120, 442–466 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Copeland, T., Koller, T., Murrin, J.: Valuation: Measuring and Managing the Value of Companies, 2nd edn. Wiley, New York (1994)Google Scholar
  11. 11.
    Debreu, G.: Theory of Value. Wiley, New York (1959)zbMATHGoogle Scholar
  12. 12.
    Eberlein, E., Madan, D.B.: The Distribution of Returns at Longer Horizons. In: Kijima, M., Hara, C., Muromachi, Y., Nakaoka, H., Nishide, K. (eds.) Recent Advances in Financial Engineering; Proceedings of the KIER-TMU Workshop. World Scientific, Singapore (2010)Google Scholar
  13. 13.
    Eberlein, E., Madan, D.B., Pistorius, M., Yor, M.: Bid and ask prices as non-linear continuous time G-expectations based on distortions. Math. Financ. Econ. 8, 265–289 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Edwards, E., Bell, P.: The Theory and Measurement of Business Income. University of California Press, Berkeley (1961)Google Scholar
  15. 15.
    El Karoui, N., Huang, S. J.: Backward Stochastic Differential Equations, chapter 2: A General Result of Existence and Uniqueness of Backward Stochastic Differential Equations, pp. 27–36. Pitman Research Notes in Mathematics, Longman (1997)Google Scholar
  16. 16.
    Gordy, M.B.: A risk-factor model foundation for ratings-based bank capital rules. J. Financ. Intermed. 12, 199–232 (2003)CrossRefGoogle Scholar
  17. 17.
    Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2013)zbMATHGoogle Scholar
  18. 18.
    Jorion, P.: Value at Risk: The New Benchmark for Managing Financial Risk. McGraw Hill, New York (2001)Google Scholar
  19. 19.
    Keen, S.: Finance and economic breakdown: modeling Minsky’s “financial instability hypothesis”. J. Post Keynes. Econ. 17, 607–635 (1995)CrossRefGoogle Scholar
  20. 20.
    Keynes, J.M.: The General Theory of Employment, Interest and Money. Macmillan, London (1936)Google Scholar
  21. 21.
    Keynes, J.M.: The General Theory of Employment. Quart. J. Econ. 51, 209–223 (1937)CrossRefGoogle Scholar
  22. 22.
    Khintchine, A.Y.: Limit Laws of Sums of Independent Random Variables. ONTI, Moscow (1938). (Russian)Google Scholar
  23. 23.
    Küchler, U., Tappe, S.: Bilateral gamma distributions and processes in financial mathematics. Stoch. Process. Appl. 118, 261–283 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kusuoka, S.: On law invariant coherent risk measures. Adv. Math. Econ. 3, 83–95 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lévy, P.: Théorie de l’Addition des Variables Aléatoires. Gauthier-Villars, Paris (1937)zbMATHGoogle Scholar
  26. 26.
    Madan, D.B.: A two price theory of financial equilibrium with risk management implications. Ann. Finance 8, 489–505 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Madan, D.B.: Asset pricing theory for two price economies. Ann. Finance 11, 1–35 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Madan, D.B.: Benchmarking in two price financial markets. Ann. Finance 12, 201–219 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Madan, D.B.: Financial equilibrium with non-linear valuations. Ann. Finance (2017).  https://doi.org/10.1007/s10436-017-0312-1 zbMATHGoogle Scholar
  30. 30.
    Madan, D.B.: Differentiating asset classes. Int. J. Portf. Anal. Manag. 2, 99–113 (2018)Google Scholar
  31. 31.
    Madan, D., Carr, P., Chang, E.: The variance gamma process and option pricing. Rev. Finance 2, 79–105 (1998)CrossRefzbMATHGoogle Scholar
  32. 32.
    Madan, D.B., Pistorius, M., Stadje, M.: On dynamic spectral risk measures, a limit theorem and optimal portfolio allocation. Finance Stoch. 21, 1073–1102 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Madan, D.B., Schoutens, W.: Tenor specific pricing. Int. J. Theor. Appl. Finance 15, 6 (2012).  https://doi.org/10.1142/S0219024912500434. (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Madan, D.B., Schoutens, W.: Applied Conic Finance. Cambridge University Press, Cambridge (2016)CrossRefzbMATHGoogle Scholar
  35. 35.
    Madan, D.B., Schoutens, W.: Conic Asset Pricing and The Costs of Price Fluctuations. (2017a). Available at SSRN: https://ssrn.com/abstract=2921365
  36. 36.
    Madan, D.B., Schoutens, W.: Conic Option Pricing. J. Deriv. (forthcoming) (2017b). Available at SSRN: https://ssrn.com/abstract=2937415
  37. 37.
    Madan, D.B., Schoutens, W., Wang, K.: Measuring and Monitoring the Efficiency of Markets. Working Paper, Robert H. Smith School of Business (2017). Available at SSRN: https://ssrn.com/abstract=2956016
  38. 38.
    Madan, D.B., Seneta, E.: The variance gamma (VG) model for share market returns. J. Bus. 63, 511–524 (1990)CrossRefGoogle Scholar
  39. 39.
    Madan, D.B., Wang, K.: Asymmetries in financial returns. Int. J. Financ. Eng. (forthcoming). (2017). Available at SSRN: https://ssrn.com/abstract=2942990
  40. 40.
    Minsky, H.M.: Inflation, Recession and Economic Policy. Wheatsheaf, Sussex (1982)Google Scholar
  41. 41.
    Minsky, H.M.: Stablizing an Unstable Economy. Yale University Press, New Haven (1986)Google Scholar
  42. 42.
    Ohlson, J.: Earnings, book values and dividends in equity valuation. Contemp. Account. Res. 11, 661–687 (1995)CrossRefGoogle Scholar
  43. 43.
    Peng, S.: Nonlinear expectations, nonlinear evaluations, and risk measures. In: Fritelli, M., Runggaldier, W. (eds.) Stochastic Methods in Finance. Lecture Notes in Mathematics, pp. 165–254. Springer, Berlin (2004)CrossRefGoogle Scholar
  44. 44.
    Philips, T.K.: Why do valuation ratios forecast long-run equity. J. Portf. Manag. 25, 39–44 (1999)CrossRefGoogle Scholar
  45. 45.
    Pratt, J.W.: Risk Aversion in the Small and in the Large. Foundations of Insurance Economics, pp. 83–98. Springer, Amsterdam (1992)CrossRefGoogle Scholar
  46. 46.
    Preinreich, G.: Annual survey of economic theory: the theory of depreciation. Econometrica 6, 219–241 (1938)CrossRefzbMATHGoogle Scholar
  47. 47.
    Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26, 1443–1471 (2002)CrossRefGoogle Scholar
  48. 48.
    Rosazza Gianin, E.: Risk measures via g-expectations. Insur. Math. Econ. 39, 19–34 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Ross, S.: A simple approach to the valuation of risky streams. J. Bus. 51, 453–475 (1978)CrossRefGoogle Scholar
  50. 50.
    Rothschild, R., Stiglitz, J.: Equilibrium in competitive insurance markets: an essay on the economics of imperfect information. Quart. J. Econ. 90, 629–649 (1990)CrossRefGoogle Scholar
  51. 51.
    Sato, K.: Lévy processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  52. 52.
    Szegö, G.P.: Measures of risk. J. Bank. Finance 26, 1253–1272 (2002)CrossRefGoogle Scholar
  53. 53.
    Williams, J.: The Theory of Investment Value. Harvard University Press, Cambridge (1938)Google Scholar
  54. 54.
    Xie, H., Wang, S., Lu, Z.: The behavioral implications of the bilateral gamma process. Physica A 500, 259–264 (2018)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Yaari, M.: The dual theory of choice under risk. Econometrica 55, 95–115 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Zavarehei, E.: Vector Quantization Matlab Code. Brunel University, London (2006)Google Scholar
  57. 57.
    Zhang, X.J.: Conservative accounting and equity valuation. J. Account. Econ. 29, 125–149 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Robert H. Smith School of BusinessUniversity of MarylandCollege ParkUSA

Personalised recommendations