Mathematics and Financial Economics

, Volume 12, Issue 4, pp 561–587 | Cite as

Dynamic asset allocation with event risk, transaction costs and predictable returns

  • Jean-Guy SimonatoEmail author


We examine the interplay between event risk, transaction costs and predictability on the dynamic asset allocation of an investor with discrete trading opportunities. The model is calibrated to the U.S. stock market and a Gauss–Hermite quadrature approach is used to solve the investor’s dynamic optimization problem. Numerical scenarios are examined to show the impact of event risk on asset allocations, hedging demands, no-trading regions, and certainty equivalent returns. It is found that event risk shrinks hedging demand. Neglecting event risk can also lead to sizeable certainty equivalent return losses.


Dynamic asset allocation Event risk Jumps Transaction costs Return predictability 

JEL Classification

G11 C61 C22 


  1. 1.
    Balduzzi, P., Lynch, A.: Transaction costs and predictability: some utility cost calculations. J. Financ. Econ. 52, 47–78 (1999)CrossRefGoogle Scholar
  2. 2.
    Ball, C., Torous, W.: A simplified jump process for common stock returns. J. Financ. Quant. Anal. 18, 53–65 (1983)CrossRefGoogle Scholar
  3. 3.
    Barberis, N.: Investing for the long run when returns are predictable. J. Financ. 55, 225–264 (2000)CrossRefGoogle Scholar
  4. 4.
    Brandt, M.: Portfolio choice problems. In: Ait-Sahalia, Y., Hansen, L.P. (eds.) Handbook of Financial Econometrics, Volume 1: Tools and Techniques, vol. 1, pp. 269–336. North-Holland Publishing Company, North Holland (2010)CrossRefGoogle Scholar
  5. 5.
    Camponovo, L., Scaillet, O., Trojani, F.: Predictability hidden by anomalous observations, Swiss Finance Institute Research Paper No. 13-05. SSRN: (2014)
  6. 6.
    Campbell, J.: Stock returns and the term structure. J. Financ. Econ. 18, 373–399 (1987)CrossRefGoogle Scholar
  7. 7.
    Campbell, J., Viceira, L.: Consumption and portfolio decisions when expected returns are time-varying. Quart. J. Econ. 114, 433–495 (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Constantinides, G.: Multiperiod consumption and investment behavior with convex transactions costs. Manag. Sci. 25, 1127–37 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Constantinides, G.: Capital market equilibrium with transaction costs. J. Polit. Econ. 94, 842–862 (1986)CrossRefGoogle Scholar
  10. 10.
    Czerwonko, M., Perrakis, S.: Portfolio selection with transaction costs and jump-diffusion asset dynamics I: a numerical solution. Q. J. Financ. 6, 1–23 (2016)Google Scholar
  11. 11.
    Fama, E., French, K.: Dividend yields and expected stock returns. J. Financ. Econ. 22, 3–27 (1988)CrossRefGoogle Scholar
  12. 12.
    Das, S., Uppal, R.: International portfolio choice with systemic risk. J. Financ. 59, 2809–2834 (2004)CrossRefGoogle Scholar
  13. 13.
    Hasbrouck, J.: Intraday price formation in U.S. equity index markets. J. Financ. 58, 2375–2399 (2003)CrossRefGoogle Scholar
  14. 14.
    Jin, X., Zhang, A.: Decomposition of optimal portfolio weights in a jump-diffusion model and its applications. Rev. Financ. Stud. 25, 2877–2919 (2012)CrossRefGoogle Scholar
  15. 15.
    Jin, X., Zhang, A.: Dynamic optimal portfolio choice in a jump-diffusion model with investment constraints. J. Bank. Financ. 37, 1733–1746 (2013)CrossRefGoogle Scholar
  16. 16.
    Judd, K.: Numerical methods in economics. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  17. 17.
    Liu, H., Loewenstein, M.: Optimal portfolio selection with transaction costs and event risk. Working paper SSRN: (2007)
  18. 18.
    Liu, J., Longstaff, F., Pan, J.: Dynamic asset allocation with event risk. J. Financ. 58, 231–259 (2003)CrossRefGoogle Scholar
  19. 19.
    Lynch, A.: Portfolio choice and equity characteristics: characterizing the hedging demands induced by return predictability. J. Financ. Econ. 62, 67–130 (2001)CrossRefGoogle Scholar
  20. 20.
    Lynch, A., Balduzzi, P.: Predictability and transaction costs: the impact on rebalancing rules and behavior. J. Financ. 55, 2285–2309 (2000)CrossRefGoogle Scholar
  21. 21.
    Lynch, A., Tan, S.: Multiple risky assets, transaction costs, and return predictability: allocation rules and implications for U.S. investors. J. Financ. Quant. Anal. 45, 105–1053 (2010)CrossRefGoogle Scholar
  22. 22.
    Mehra, R., Prescott, E.C.: The equity premium: a puzzle. J. Monet. Econ. 15, 145–161 (1985)CrossRefGoogle Scholar
  23. 23.
    Merton, R.: Option pricing when the underlying process for stock returns is discontinuous. J. Financ. Econ. 3, 124–144 (1976)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of FinanceHEC MontréalMontrealCanada

Personalised recommendations