Advertisement

Machine classification of spatiotemporal patterns: automated parameter search in a rebounding spiking network

  • Lawrence Oprea
  • Christopher C. Pack
  • Anmar KhadraEmail author
Research Article
  • 10 Downloads

Abstract

Various patterns of electrical activities, including travelling waves, have been observed in cortical experimental data from animal models as well as humans. By applying machine learning techniques, we investigate the spatiotemporal patterns, found in a spiking neuronal network with inhibition-induced firing (rebounding). Our cortical sheet model produces a wide variety of network activities including synchrony, target waves, and travelling wavelets. Pattern formation is controlled by modifying a Gaussian derivative coupling kernel through varying the level of inhibition, coupling strength, and kernel geometry. We have designed a computationally efficient machine classifier, based on statistical, textural, and temporal features, to identify the parameter regimes associated with different spatiotemporal patterns. Our results reveal that switching between synchrony and travelling waves can occur transiently and spontaneously without a stimulus, in a noise-dependent fashion, or in the presence of stimulus when the coupling strength and level of inhibition are at moderate values. They also demonstrate that when a target wave is formed, its wave speed is most sensitive to perturbations in the coupling strength between model neurons. This study provides an automated method to characterize activities produced by a novel spiking network that phenomenologically models large scale dynamics in the cortex.

Keywords

Supervised learning Spatiotemporal patterns Izhikevich spiking model Rebounding neuronal network Gaussian coupling kernel Synchrony and travelling waves Fast switching in neural activity 

Notes

Acknowledgements

This work was supported by a Natural Sciences and Engineering Council of Canada discovery grant to A.K, and by Chercheur-boursier de merite grant to C.P.

References

  1. Adhikari MH, Quilichini PP, Roy D, Jirsa V, Bernard C (2012) Brain state dependent postinhibitory rebound in entorhinal cortex interneurons. J Neurosci 32(19):6501–6510PubMedPubMedCentralCrossRefGoogle Scholar
  2. Afrashteh N, Inayat S, Mohsenvand M, Mohajerani MH (2017) Optical-flow analysis toolbox for characterization of spatiotemporal dynamics in mesoscale optical imaging of brain activity. NeuroImage 153:58–74PubMedCrossRefGoogle Scholar
  3. Andrew AM (2000) An introduction to support vector machines and other kernel-based learning methods by nello christianini and john Shawe–Taylor. Robotica 18(6):687–689Google Scholar
  4. Bar Y, Diamant I, Wolf L, Lieberman S, Konen E, Greenspan H (2015) Chest pathology detection using deep learning with non-medical training. In: 2015 IEEE 12th international symposium on biomedical imaging (ISBI), pp 294–297. IEEEGoogle Scholar
  5. Benucci A, Frazor RA, Carandini M (2007) Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55(1):103–117PubMedPubMedCentralCrossRefGoogle Scholar
  6. Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRefGoogle Scholar
  7. Chen Y, Geisler WS, Seidemann E (2006) Optimal decoding of correlated neural population responses in the primate visual cortex. Nat Neurosci 9(11):1412PubMedPubMedCentralCrossRefGoogle Scholar
  8. Coombes S, Doole S (1996) Neuronal populations with reciprocal inhibition and rebound currents: effects of synaptic and threshold noise. Phys Rev E 54(4):4054CrossRefGoogle Scholar
  9. Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophys 76(3):2049–2070CrossRefGoogle Scholar
  10. Ermentrout B (1998) Neural networks as spatio-temporal pattern-forming systems. Rep Progr Phys 61(4):353CrossRefGoogle Scholar
  11. Ermentrout GB, Kleinfeld D (2001) Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron 29(1):33–44PubMedCrossRefGoogle Scholar
  12. Ermentrout GB, Terman DH (2010) Mathematical foundations of neuroscience, vol 35. Springer, BerlinCrossRefGoogle Scholar
  13. Eytan D, Marom S (2006) Dynamics and effective topology underlying synchronization in networks of cortical neurons. J Neurosci 26(33):8465–8476PubMedPubMedCentralCrossRefGoogle Scholar
  14. Fakoor R, Ladhak F, Nazi A, Huber M (2013) Using deep learning to enhance cancer diagnosis and classification. In: Proceedings of the international conference on machine learning, vol 28. ACM New York, USAGoogle Scholar
  15. Ghai C (2012) A textbook of practical physiology. JP Medical LtdGoogle Scholar
  16. Girard P, Hupé J, Bullier J (2001) Feedforward and feedback connections between areas v1 and v2 of the monkey have similar rapid conduction velocities. J Neurophys 85(3):1328–1331CrossRefGoogle Scholar
  17. Golomb D, Wang X-J, Rinzel J (1996) Propagation of spindle waves in a thalamic slice model. J Neurophys 75(2):750–769CrossRefGoogle Scholar
  18. Hahn SL (1996) Hilbert transforms in signal processing, vol 2. Artech House, BostonGoogle Scholar
  19. Han F, Caporale N, Dan Y (2008) Reverberation of recent visual experience in spontaneous cortical waves. Neuron 60(2):321–327PubMedPubMedCentralCrossRefGoogle Scholar
  20. Haralick RM, Shanmugam K, Dinstein I et al (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621CrossRefGoogle Scholar
  21. Heitmann S, Boonstra T, Gong P, Breakspear M, Ermentrout B (2015) The rhythms of steady posture: motor commands as spatially organized oscillation patterns. Neurocomputing 170:3–14CrossRefGoogle Scholar
  22. Heitmann S, Gong P, Breakspear M (2012) A computational role for bistability and traveling waves in motor cortex. Front Comput Neurosci 6:67PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544PubMedPubMedCentralCrossRefGoogle Scholar
  24. Hopkins M, Furber S (2015) Accuracy and efficiency in fixed-point neural ODE solvers. Neural Comput 27(10):2148–2182PubMedCrossRefGoogle Scholar
  25. Horn BK, Schunck BG (1981) Determining optical flow. Artif intell 17(1–3):185–203CrossRefGoogle Scholar
  26. Huang X, Troy WC, Yang Q, Ma H, Laing CR, Schiff SJ, Wu J-Y (2004) Spiral waves in disinhibited mammalian neocortex. J Neurosci 24(44):9897–9902PubMedPubMedCentralCrossRefGoogle Scholar
  27. Izhikevich EM (2001) Resonate-and-fire neurons. Neural Netw 14(6–7):883–894PubMedCrossRefGoogle Scholar
  28. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572PubMedCrossRefGoogle Scholar
  29. Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070PubMedCrossRefGoogle Scholar
  30. Jacobs J, Kahana MJ, Ekstrom AD, Fried I (2007) Brain oscillations control timing of single-neuron activity in humans. J Neurosci 27(14):3839–3844PubMedPubMedCentralCrossRefGoogle Scholar
  31. Jancke D, Chavane F, Naaman S, Grinvald A (2004) Imaging cortical correlates of illusion in early visual cortex. Nature 428(6981):423PubMedCrossRefGoogle Scholar
  32. Jansen BH, Brandt ME (1991) The effect of the phase of prestimulus alpha activity on the averaged visual evoked response. Electroencephalogr Clin Neurophysiol/Evoked Potentials Sect 80(4):241–250CrossRefGoogle Scholar
  33. Johannesen L, Grove USL, Sørensen JS, Schmidt ML, Couderc J, Graff C (2010) A wavelet-based algorithm for delineation and classification of wave patterns in continuous holter ECG recordings. In: 2010 Computing in cardiology, pp 979–982. IEEEGoogle Scholar
  34. Korchiyne R, Farssi SM, Sbihi A, Touahni R, Alaoui MT (2014) A combined method of fractal and GLCM features for MRI and Ct scan images classification. arXiv preprint arXiv:1409.4559
  35. Lu Y, Sato Y, Amari S-I (2011) Traveling bumps and their collisions in a two-dimensional neural field. Neural Comput 23(5):1248–1260PubMedCrossRefGoogle Scholar
  36. Maeda J, Novianto S, Miyashita A, Saga S, Suzuki Y (1998) Fuzzy region-growing segmentation of natural images using local fractal dimension. In: Proceedings. Fourteenth international conference on pattern recognition (Cat. No. 98EX170), vol 2, pp 991–993. IEEEGoogle Scholar
  37. Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R, McVea DA, Boyd JD, Wang YT, Reimers M, Murphy TH (2013) Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nature Neurosci 16(10):1426PubMedCrossRefPubMedCentralGoogle Scholar
  38. Muller L, Chavane F, Reynolds J, Sejnowski TJ (2018) Cortical travelling waves: mechanisms and computational principles. Nat Rev Neurosci 19:255PubMedPubMedCentralCrossRefGoogle Scholar
  39. Muller L, Reynaud A, Chavane F, Destexhe A (2014) The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat Commun 5:3675PubMedPubMedCentralCrossRefGoogle Scholar
  40. Oprea L, Pack CC, Khadra A (2019) Spatiotemporal patterns in a rebounding spiking network: a machine classification approach. www.medicine.mcgill.ca/physio/khadralab/code_cogneurody1.html
  41. Orlandi JG, Soriano J, Alvarez-Lacalle E, Teller S, Casademunt J (2013) Noise focusing and the emergence of coherent activity in neuronal cultures. Nat Phys 9(9):582CrossRefGoogle Scholar
  42. Patel J, Schomburg EW, Berényi A, Fujisawa S, Buzsáki G (2013) Local generation and propagation of ripples along the septotemporal axis of the hippocampus. J Neurosci 33(43):17029–17041PubMedPubMedCentralCrossRefGoogle Scholar
  43. Pinto DJ, Ermentrout GB (2001) Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM J Appl Math 62(1):206–225CrossRefGoogle Scholar
  44. Prechtl J, Cohen L, Pesaran B, Mitra P, Kleinfeld D (1997) Visual stimuli induce waves of electrical activity in turtle cortex. Proc Natl Acad Sci 94(14):7621–7626PubMedCrossRefGoogle Scholar
  45. Reimer A, Hubka P, Engel AK, Kral A (2010) Fast propagating waves within the rodent auditory cortex. Cereb Cortex 21(1):166–177PubMedCrossRefGoogle Scholar
  46. Rinzel J, Terman D, Wang X-J, Ermentrout B (1998) Propagating activity patterns in large-scale inhibitory neuronal networks. Science 279(5355):1351–1355PubMedCrossRefGoogle Scholar
  47. Roland PE, Hanazawa A, Undeman C, Eriksson D, Tompa T, Nakamura H, Valentiniene S, Ahmed B (2006) Cortical feedback depolarization waves: a mechanism of top-down influence on early visual areas. Proc Natl Acad Sci 103(33):12586–12591PubMedCrossRefGoogle Scholar
  48. Rubino D, Robbins KA, Hatsopoulos NG (2006) Propagating waves mediate information transfer in the motor cortex. Nat Neurosci 9(12):1549PubMedCrossRefGoogle Scholar
  49. Sato TK, Nauhaus I, Carandini M (2012) Traveling waves in visual cortex. Neuron 75(2):218–229PubMedCrossRefGoogle Scholar
  50. Schirrmeister R, Gemein L, Eggensperger K, Hutter F, Ball T (2017) Deep learning with convolutional neural networks for decoding and visualization of eeg pathology. In: 2017 IEEE signal processing in medicine and biology symposium (SPMB), pp 1–7. IEEEGoogle Scholar
  51. Smith GD, Cox CL, Sherman SM, Rinzel J (2000) Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J Neurophys 83(1):588–610CrossRefGoogle Scholar
  52. Song W-J, Kawaguchi H, Totoki S, Inoue Y, Katura T, Maeda S, Inagaki S, Shirasawa H, Nishimura M (2005) Cortical intrinsic circuits can support activity propagation through an isofrequency strip of the guinea pig primary auditory cortex. Cereb Cortex 16(5):718–729PubMedCrossRefGoogle Scholar
  53. Takahashi K, Saleh M, Penn RD, Hatsopoulos N (2011) Propagating waves in human motor cortex. Front Hum Neurosci 5:40PubMedPubMedCentralCrossRefGoogle Scholar
  54. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78CrossRefGoogle Scholar
  55. Townsend RG, Gong P (2018) Detection and analysis of spatiotemporal patterns in brain activity. PLoS Comput Biol 14(12):e1006643PubMedPubMedCentralCrossRefGoogle Scholar
  56. Townsend RG, Solomon SS, Chen SC, Pietersen AN, Martin PR, Solomon SG, Gong P (2015) Emergence of complex wave patterns in primate cerebral cortex. J Neurosci 35(11):4657–4662PubMedPubMedCentralCrossRefGoogle Scholar
  57. Wu J-Y, Huang X, Zhang C (2008) Propagating waves of activity in the neocortex: what they are, what they do. Neuroscientist 14(5):487–502PubMedPubMedCentralCrossRefGoogle Scholar
  58. Xu W, Huang X, Takagaki K, Wu J-Y (2007) Compression and reflection of visually evoked cortical waves. Neuron 55(1):119–129PubMedPubMedCentralCrossRefGoogle Scholar
  59. Zanos TP, Mineault PJ, Guitton D, Pack CC (2016) Mechanisms of saccadic suppression in primate cortical area v4. J Neurosci 36(35):9227–9239PubMedPubMedCentralCrossRefGoogle Scholar
  60. Zanos TP, Mineault PJ, Nasiotis KT, Guitton D, Pack CC (2015) A sensorimotor role for traveling waves in primate visual cortex. Neuron 85(3):615–627PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  • Lawrence Oprea
    • 1
  • Christopher C. Pack
    • 2
  • Anmar Khadra
    • 1
    Email author
  1. 1.Department of PhysiologyMcGill UniversityMontréalCanada
  2. 2.Department of Neurology and NeurosurgeryMcGill UniversityMontréalCanada

Personalised recommendations