Transcranial direct current stimulation influences bilingual language control mechanism: evidence from cross-frequency coupling

  • Jing Tong
  • Chao Kong
  • Xin Wang
  • Huanhuan LiuEmail author
  • Baike Li
  • Yuying He
Research Article


How to better suppress the interference from the non-target language when switching from one language to the other in bilingual production? The current study applied transcranial direct current stimulation over the right dorsolateral prefrontal cortex to modulate language control measured by cross-frequency coupling. We found that switching to L2 was more modulated by F4–F3 alpha–beta phase-amplitude compared to switching to L1 after receiving the anodal stimulation at the language task schema phase. These findings suggest that anodal stimulation affects the selection of the target language task schema by enhancing the activation of frontal areas and facilitating the coordination between the left and the right frontal hemispheres.


Language control Transcranial direct current stimulation Language switching Cross-frequency coupling 



This research was supported by a Grant from National Natural Science Foundation of China Youth Fund (31700991), Liaoning Natural Science Foundation of China (20170540579), China Postdoctoral Science Foundation (2017M621158), and Open Fund of Beijing Key Lab of Applied Experimental Psychology.


  1. Abutalebi J, Green D (2007) Bilingual language production: the neurocognition of language representation and control. J Neurolinguistics 20(3):242–275CrossRefGoogle Scholar
  2. Abutalebi J, Green DW (2016) Neuroimaging of language control in bilinguals: neural adaptation and reserve. Biling Lang Cognit 19(4):689–698CrossRefGoogle Scholar
  3. Allan D (1995) Oxford placement test. Oxford University Press, OxfordGoogle Scholar
  4. Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA (2007) Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci 27(14):3743–3752PubMedPubMedCentralCrossRefGoogle Scholar
  5. Avenanti A, Paracampo R, Annella L, Tidoni E, Aglioti SM (2017) Boosting and decreasing action prediction abilities through excitatory and inhibitory tDCS of inferior frontal cortex. Cereb Cortex 28(4):1282–1296CrossRefGoogle Scholar
  6. Baus C, Branzi F, Costa A (2015) On the mechanism and scope of language control in bilingual speech production. In: Cambridge handbook of bilingual processing, pp. 508–526Google Scholar
  7. Benedek M, Schickel RJ, Jauk E, Fink A, Neubauer AC (2014) Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia 56:393–400PubMedPubMedCentralCrossRefGoogle Scholar
  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57(1):289–300Google Scholar
  9. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188CrossRefGoogle Scholar
  10. Blanco-Elorrieta E, Pylkkänen L (2016) Bilingual language control in perception versus action: MEG reveals comprehension control mechanisms in anterior cingulate cortex and domain-general control of production in dorsolateral prefrontal cortex. J Neurosci 36(2):290–301PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blanco-Elorrieta E, Pylkkänen L (2017) Bilingual language switching in the laboratory versus in the wild: The spatiotemporal dynamics of adaptive language control. J Neurosci 37:9022–9036PubMedPubMedCentralCrossRefGoogle Scholar
  12. Blanco-Elorrieta E, Pylkkänen L (2018) Ecological validity in bilingualism research and the bilingual advantage. Trends Cognit Sci 22(12):1117–1126CrossRefGoogle Scholar
  13. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, Edwards DJ, Valero-Cabre A, Rotenberg A, Pascual-Leone A, Ferrucci R (2012) Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul 5(3):175–195PubMedCrossRefGoogle Scholar
  14. Burgess AP (2013) On the interpretation of synchronization in EEG hyperscanning studies: a cautionary note. Front Hum Neurosci 7:881PubMedPubMedCentralGoogle Scholar
  15. Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling. Trends Cognit Sci 14(11):506–515CrossRefGoogle Scholar
  16. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313(5793):1626–1628PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cantalupo C, Hopkins WD (2001) Asymmetric Broca’s area in great apes. Nature 414(6863):505PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cooper PS, Wong AS, Fulham WR, Thienel R, Mansfield E, Michie PT, Karayanidis F (2015) Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes. NeuroImage 108:354–363PubMedCrossRefGoogle Scholar
  19. Costa A, Santesteban M (2004) Lexical access in bilingual speech production: evidence from language switching in highly proficient bilinguals and L2 learners. J Mem Lang 50(4):491–511CrossRefGoogle Scholar
  20. Costa A, Santesteban M, Ivanova I (2006) How do highly proficient bilinguals control their lexicalization process? Inhibitory and language-specific selection mechanisms are both functional. J Exp Psychol Learn Mem Cognit 32(5):1057CrossRefGoogle Scholar
  21. De Bruin A, Roelofs A, Dijkstra T, FitzPatrick I (2014) Domain-general inhibition areas of the brain are involved in language switching: FMRI evidence from trilingual speakers. NeuroImage 90:348–359PubMedCrossRefGoogle Scholar
  22. Declerck M, Koch I, Philipp AM (2015) The minimum requirements of language control: evidence from sequential predictability effects in language switching. J Exp Psychol Learn Mem Cognit 41(2):377CrossRefGoogle Scholar
  23. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fertonani A, Rosini S, Cotelli M, Rossini PM, Miniussi C (2010) Naming facilitation induced by transcranial direct current stimulation. Behav Brain Res 208(2):311–318PubMedCrossRefGoogle Scholar
  25. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Pascual-Leone A, Marcolin MA, Rigonatti SP, Silva MT, Paulus W (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166(1):23–30PubMedCrossRefGoogle Scholar
  26. Friese U, Köster M, Hassler U, Martens U, Trujillo-Barreto N, Gruber T (2013) Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG. NeuroImage 66:642–647PubMedCrossRefGoogle Scholar
  27. Gollan TH, Schotter ER, Gomez J, Murillo M, Rayner K (2014) Multiple levels of bilingual language control: evidence from language intrusions in reading aloud. Psychol Sci 25(2):585–595PubMedCrossRefGoogle Scholar
  28. Green DW (1998) Mental control of the bilingual lexico-semantic system. Biling Lang Cognit 1(2):67–81CrossRefGoogle Scholar
  29. Green DW, Abutalebi J (2013) Language control in bilinguals: the adaptive control hypothesis. J Cognit Psychol 25(5):515–530CrossRefGoogle Scholar
  30. Heinen K, Sagliano L, Candini M, Husain M, Cappelletti M, Zokaei N (2016) Cathodal transcranial direct current stimulation over posterior parietal cortex enhances distinct aspects of visual working memory. Neuropsychologia 87:35–42PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hill AT, Fitzgerald PB, Hoy KE (2016) Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimul 9(2):197–208PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hyafil A, Giraud AL, Fontolan L, Gutkin B (2015) Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci 38(11):725–740PubMedCrossRefPubMedCentralGoogle Scholar
  33. Keser Z, Hasan KM, Francisco GE, Yozbatiran N (2017) Effects of combined transcranial direct current stimulation (tDCS) and robotic-assisted arm training (RAT) on the main motor, sensory and cerebellar tracts in spinal cord injury. Brain Stimul Basic Transl Clin Res Neuromodul 10(1):e10Google Scholar
  34. Klepp A, Niccolai V, Buccino G, Schnitzler A, Biermann-Ruben K (2015) Language–motor interference reflected in MEG beta oscillations. NeuroImage 109:438–448PubMedCrossRefGoogle Scholar
  35. Klimesch W (2012) Alpha-band oscillations, attention, and controlled access to stored information. Trends Cognit Sci 16:606–617CrossRefGoogle Scholar
  36. Lemhöfer K, Broersma M (2012) Introducing LexTALE: a quick and valid lexical test for advanced learners of English. Behav Res Methods 44(2):325–343PubMedCrossRefGoogle Scholar
  37. Lewis AG, Bastiaansen M (2015) A predictive coding framework for rapid neural dynamics during sentence-level language comprehension. Cortex 68:155–168PubMedCrossRefPubMedCentralGoogle Scholar
  38. Liu H, Rossi S, Zhou H, Chen B (2014) Electrophysiological evidence for domain-general inhibitory control during bilingual language switching. PLoS One 9(10):e110887PubMedPubMedCentralCrossRefGoogle Scholar
  39. Liu H, Liang L, Dunlap S, Fan N, Chen B (2016) The effect of domain-general inhibition-related training on language switching: an ERP study. Cognition 146:264–276PubMedCrossRefPubMedCentralGoogle Scholar
  40. Liu H, Xie N, Zhang M, Gao X, Dunlap S, Chen B (2018) The electrophysiological mechanism of joint language switching: evidence from simultaneous production and comprehension. J Neurolinguistics 45:45–59CrossRefGoogle Scholar
  41. Luk G, Green DW, Abutalebi J, Grady C (2012) Cognitive control for language switching in bilinguals: a quantitative meta-analysis of functional neuroimaging studies. Lang Cognit Process 27(10):1479–1488CrossRefGoogle Scholar
  42. Marple L (1999) Computing the discrete-time” analytic” signal via FFT. IEEE Trans Signal Process 47(9):2600–2603CrossRefGoogle Scholar
  43. Meinzer M, Antonenko D, Lindenberg R, Hetzer S, Ulm L, Avirame K, Floel A, Avirame K, Flaisch T (2012) Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. J Neurosci 32(5):1859–1866PubMedPubMedCentralCrossRefGoogle Scholar
  44. Meuter RF, Allport A (1999) Bilingual language switching in naming: asymmetrical costs of language selection. J Mem Lang 40(1):25–40CrossRefGoogle Scholar
  45. Nelson JT, McKinley RA, Golob EJ, Warm JS, Parasuraman R (2014) Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). NeuroImage 85:909–917PubMedCrossRefGoogle Scholar
  46. Onslow AC, Jones MW, Bogacz R (2014) A canonical circuit for generating phase-amplitude coupling. PLoS One 9(8):e102591PubMedPubMedCentralCrossRefGoogle Scholar
  47. Oppenheim AV (1999) Discrete-time signal processing. Pearson Education India, BengaluruGoogle Scholar
  48. Pastötter B, Hanslmayr S, Bäuml KH (2008) Inhibition of return arises from inhibition of response processes: an analysis of oscillatory beta activity. J Cognit Neurosci 20(1):65–75CrossRefGoogle Scholar
  49. Payne L, Sekuler R (2014) The importance of ignoring: alpha oscillations protect selectivity. Curr Dir Psychol Sci 23(3):171–177PubMedPubMedCentralCrossRefGoogle Scholar
  50. Penny WD, Duzel E, Miller KJ, Ojemann JG (2008) Testing for nested oscillation. J Neurosci Methods 174(1):50–61PubMedPubMedCentralCrossRefGoogle Scholar
  51. Philipp AM, Koch I (2009) Inhibition in language switching: what is inhibited when switching between languages in naming tasks? J Exp Psychol Learn Mem Cognit 35(5):1187CrossRefGoogle Scholar
  52. Philipp AM, Gade M, Koch I (2007) Inhibitory processes in language switching: evidence from switching language-defined response sets. Eur J Cognit Psychol 19(3):395–416CrossRefGoogle Scholar
  53. Poikonen H, Toiviainen P, Tervaniemi M (2018) Naturalistic music and dance: cortical phase synchrony in musicians and dancers. PLoS One 13(4):e0196065PubMedPubMedCentralCrossRefGoogle Scholar
  54. Pope PA, Miall RC (2012) Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul 5(2):84–94PubMedPubMedCentralCrossRefGoogle Scholar
  55. Tayeb Y, Lavidor M (2016) Enhancing switching abilities: improving practice effect by stimulating the dorsolateral prefrontal cortex. Neuroscience 313:92–98PubMedCrossRefGoogle Scholar
  56. Tort AB, Komorowski R, Eichenbaum H, Kopell N (2010) Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol 104(2):1195–1210PubMedPubMedCentralCrossRefGoogle Scholar
  57. Vaz AP, Yaffe RB, Wittig JH Jr, Inati SK, Zaghloul KA (2017) Dual origins of measured phase-amplitude coupling reveal distinct neural mechanisms underlying episodic memory in the human cortex. NeuroImage 148:148–159PubMedPubMedCentralCrossRefGoogle Scholar
  58. Watkins K, Paus T (2004) Modulation of motor excitability during speech perception: the role of Broca’s area. J Cognit Neurosci 16(6):978–987CrossRefGoogle Scholar
  59. Weiss M, Lavidor M (2012) When less is more: evidence for a facilitative cathodal tDCS effect in attentional abilities. J Cognit Neurosci 24(9):1826–1833CrossRefGoogle Scholar
  60. Yun K, Watanabe K, Shimojo S (2012) Cross person body and neural synchronization as a marker of implicit social interaction. Sci Rep 2:959PubMedPubMedCentralCrossRefGoogle Scholar
  61. Zhang QF, Yang YF (2003) The determiners of picture naming latency. Acta Psychol Sin 35(4):447–454Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jing Tong
    • 1
  • Chao Kong
    • 1
  • Xin Wang
    • 2
  • Huanhuan Liu
    • 1
    Email author
  • Baike Li
    • 1
  • Yuying He
    • 1
  1. 1.Research Center of Brain and Cognitive NeuroscienceLiaoning Normal UniversityDalianChina
  2. 2.Department of Linguistics, Faculty of Human SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations