Cognitive Neurodynamics

, Volume 13, Issue 6, pp 519–530 | Cite as

Computer-aided classifying and characterizing of methamphetamine use disorder using resting-state EEG

  • Hassan Khajehpour
  • Fahimeh Mohagheghian
  • Hamed Ekhtiari
  • Bahador MakkiabadiEmail author
  • Amir Homayoun Jafari
  • Ehsan Eqlimi
  • Mohammad Hossein Harirchian
Research Article


Methamphetamine (meth) is potently addictive and is closely linked to high crime rates in the world. Since meth withdrawal is very painful and difficult, most abusers relapse to abuse in traditional treatments. Therefore, developing accurate data-driven methods based on brain functional connectivity could be helpful in classifying and characterizing the neural features of meth dependence to optimize the treatments. Accordingly, in this study, computation of functional connectivity using resting-state EEG was used to classify meth dependence. Firstly, brain functional connectivity networks (FCNs) of 36 meth dependent individuals and 24 normal controls were constructed by weighted phase lag index, in six frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–15 Hz), beta (15–30 Hz), gamma (30–45 Hz) and wideband (1–45 Hz).Then, significant differences in graph metrics and connectivity values of the FCNs were used to distinguish the two groups. Support vector machine classifier had the best performance with 93% accuracy, 100% sensitivity, 83% specificity and 0.94 F-score for differentiating between MDIs and NCs. The best performance yielded when selected features were the combination of connectivity values and graph metrics in the beta frequency band.


Support vector machine Weighted phase lag index Functional brain connectivity network Electroencephalography Meth dependence 



The authors wish to thank TUMS and CSTC for financial support of this research and also National Brain Mapping Laboratory (NBML) for their instrumental support.


This work was supported in part by Tehran University of Medical Sciences (TUMS) (, project Grant No. of 95-02-30-32441, and also by Cognitive Sciences and Technologies Council (CSTC) ( Grant No. of 4517. The funders has played no role in the research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experimental was reviewed and approved by the ethics committee of Tehran University of Medical Sciences (Iran) (Ethical Committee Approval Code: IR.TUMS.MEDICINE.REC.1395.1621).


  1. Ahmadlou M, Ahmadi K, Rezazade M, Azad-Marzabadi E (2013) Global organization of functional brain connectivity in methamphetamine abusers. Clin Neurophysiol 124(6):1122–1131CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alvar AA, Deevband MR, Ashtiyani M (2017) Neutron spectrum unfolding using radial basis function neural networks. Appl Radiat Isot 129:35–41CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bae Y, Yoo BW, Lee JC, Kim HC (2017) Automated network analysis to measure brain effective connectivity estimated from EEG data of patients with alcoholism. Physiol Meas 38(5):759CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bauer LO (2001) Predicting relapse to alcohol and drug abuse via quantitative electroencephalography. Neuropsychopharmacology 25(3):332–340CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186CrossRefPubMedPubMedCentralGoogle Scholar
  6. Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167CrossRefGoogle Scholar
  7. Choi JS, Park SM, Lee J, Hwang JY, Jung HY, Choi SW, Kim DJ, Oh S, Lee JY (2013) Resting-state beta and gamma activity in Internet addiction. Int J Psychophysiol 89(3):328–333CrossRefPubMedPubMedCentralGoogle Scholar
  8. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dunning JP, Parvaz MA, Hajcak G, Maloney T, Alia-Klein N, Woicik PA, Telang F, Wang GJ, Volkow ND, Goldstein RZ (2011) Motivated attention to cocaine and emotional cues in abstinent and current cocaine users—an ERP study. Eur J Neurosci 33(9):1716–1723CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ewald A, Aristei S, Nolte G, Rahman RA (2012) Brain oscillations and functional connectivity during overt language production. Front Psychol 3:166CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fein G, Allen J (2005) EEG spectral changes in treatment-naive, actively drinking alcoholics. Alcohol Clin Exp Res 29(4):538–546CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fingelkurts AA, Fingelkurts AA, Kivisaari R, Autti T, Borisov S, Puuskari V, Jokela O, Kahkonen S (2006) Increased local and decreased remote functional connectivity at EEG alpha and beta frequency bands in opioid-dependent patients. Psychopharmacology 188(1):42–52CrossRefPubMedPubMedCentralGoogle Scholar
  13. Franken IH, Stam CJ, Hendriks VM, van den Brink W (2004) Electroencephalographic power and coherence analyses suggest altered brain function in abstinent male heroin-dependent patients. Neuropsychobiology 49(2):105–110CrossRefPubMedPubMedCentralGoogle Scholar
  14. González GF, Van der Molen M, Žarić G, Bonte M, Tijms J, Blomert L, Stam C, Van der Molen M (2016) Graph analysis of EEG resting state functional networks in dyslexic readers. Clin Neurophysiol 127(9):3165–3175CrossRefGoogle Scholar
  15. Günther W, Müller N, Knesewitsch P, Haag C, Trapp W, Banquet J-P, Stieg C, Alper KR (1997) Functional EEG mapping and SPECT in detoxified male alcoholics. Eur Arch Psychiatry Clin Neurosci 247(3):128–136CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hardmeier M, Hatz F, Bousleiman H, Schindler C, Stam CJ, Fuhr P (2014) Reproducibility of functional connectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG. PLoS ONE 9(10):e108648CrossRefPubMedPubMedCentralGoogle Scholar
  17. Haufe S, Nikulin VV, Müller K-R, Nolte G (2013) A critical assessment of connectivity measures for EEG data: a simulation study. Neuroimage 64:120–133CrossRefPubMedPubMedCentralGoogle Scholar
  18. Herning RI, Better W, Cadet JL (2008) EEG of chronic marijuana users during abstinence: relationship to years of marijuana use, cerebral blood flow and thyroid function. Clin Neurophysiol 119(2):321–331CrossRefPubMedPubMedCentralGoogle Scholar
  19. Herrera-Diaz A, Mendoza-Quinones R, Melie-Garcia L, Martinez-Montes E, Sanabria-Diaz G, Romero-Quintana Y, Salazar-Guerra I, Carballoso-Acosta M, Caballero-Moreno A (2016) Functional connectivity and quantitative EEG in women with alcohol use disorders: a resting-state study. Brain Topogr 29(3):368–381CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hjorth B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol 39(5):526–530CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hu B, Dong Q, Hao Y, Zhao Q, Shen J, Zheng F (2017) Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects. J Neural Eng 14(4):046002CrossRefPubMedPubMedCentralGoogle Scholar
  22. Huang Y, Mohan A, De Ridder D, Sunaert S, Vanneste S (2018) The neural correlates of the unified percept of alcohol-related craving: a fMRI and EEG study. Sci Rep 8(1):923CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jena SK (2015) Examination stress and its effect on EEG. Int J Med Sci Public Health 11(4):1493–1497CrossRefGoogle Scholar
  24. Jiang G, Wen X, Qiu Y, Zhang R, Wang J, Li M, Ma X, Tian J, Huang R (2013) Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study. PLoS ONE 8(12):e82715CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kim YJ, Lee JY, Oh S, Park M, Jung HY, Sohn BK, Choi SW, Kim DJ, Choi JS (2017) Associations between prospective symptom changes and slow-wave activity in patients with Internet gaming disorder: a resting-state EEG study. Medicine 96(8):e6178CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lee JY, Park SM, Kim YJ, Kim DJ, Choi S-W, Kwon JS, Choi J-S (2017) Resting-state EEG activity related to impulsivity in gambling disorder. J Behav Addict 6(3):387–395CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ma N, Liu Y, Li N, Wang C-X, Zhang H, Jiang X-F, Xu H-S, Fu X-M, Hu X, Zhang D-R (2010) Addiction related alteration in resting-state brain connectivity. Neuroimage 49(1):738–744CrossRefPubMedPubMedCentralGoogle Scholar
  28. McKetin R, McLaren J, Lubman DI, Hides L (2006) The prevalence of psychotic symptoms among methamphetamine users. Addiction 101(10):1473–1478CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mohagheghian F, Makkiabadi B, Jalilvand H, Khajehpoor H, Samadzadehaghdam N, Eqlimi E, Deevband M (2018) Computer-aided tinnitus detection based on brain network analysis of EEG functional connectivity. J Biomed Phys EngGoogle Scholar
  30. Motlagh F, Ibrahim F, Rashid R, Seghatoleslam T, Habil H (2017) Investigation of brain electrophysiological properties among heroin addicts: quantitative EEG and event-related potentials. J Neurosci Res 95(8):1633–1646CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mumtaz W, Vuong PL, Xia L, Malik AS, Rashid RBA (2017) An EEG-based machine learning method to screen alcohol use disorder. Cogn Neurodyn 11(2):161–171CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mumtaz W, Kamel N, Ali SSA, Malik AS (2018a) An EEG-based functional connectivity measure for automatic detection of alcohol use disorder. Artif Intell Med 84:79–89CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mumtaz W, Vuong PL, Malik AS, Rashid RBA (2018b) A review on EEG-based methods for screening and diagnosing alcohol use disorder. Cogn Neurodyn 12(2):141–156CrossRefPubMedPubMedCentralGoogle Scholar
  34. Newson JJ, Thiagarajan TC (2018) EEG frequency bands in psychiatric disorders: a review of resting state studies. Front Hum Neurosci 12:521CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ojala M, Garriga GC (2010) Permutation tests for studying classifier performance. J Mach Learn Res 11(Jun):1833–1863Google Scholar
  36. Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:1CrossRefGoogle Scholar
  37. Park SM, Lee JY, Kim YJ, Lee JY, Jung HY, Sohn BK, Kim DJ, Choi JS (2017) Neural connectivity in Internet gaming disorder and alcohol use disorder: a resting-state EEG coherence study. Sci Rep 7(1):1333CrossRefPubMedPubMedCentralGoogle Scholar
  38. Polunina AG, Davydov DM (2004) EEG spectral power and mean frequencies in early heroin abstinence. Prog Neuropsychopharmacol Biol Psychiatry 28(1):73–82CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rangaswamy M, Porjesz B, Chorlian DB, Wang K, Jones KA, Bauer LO, Rohrbaugh J, O’connor SJ, Kuperman S, Reich T (2002) Beta power in the EEG of alcoholics. Biol Psychiat 52(8):831–842CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rangaswamy M, Porjesz B, Chorlian DB, Choi K, Jones KA, Wang K, Rohrbaugh J, O’Connor S, Kuperman S, Reich T (2003) Theta power in the EEG of alcoholics. Alcohol Clin Exp Res 27(4):607–615CrossRefPubMedPubMedCentralGoogle Scholar
  41. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRefGoogle Scholar
  42. Saletu-Zyhlarz GM, Arnold O, Anderer P, Oberndorfer S, Walter H, Lesch OM, Böning J, Saletu B (2004) Differences in brain function between relapsing and abstaining alcohol-dependent patients, evaluated by EEG mapping. Alcohol Alcohol 39(3):233–240CrossRefPubMedPubMedCentralGoogle Scholar
  43. Shahmohammadi F, Golesorkhi M, Kashani MMR, Sangi M, Yoonessi A, Yoonessi A (2016) Neural correlates of craving in methamphetamine abuse. Basic Clin Neurosci 7(3):221PubMedPubMedCentralGoogle Scholar
  44. Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of machine learning algorithms. Adv Neural Inf Process Syst 5(1):2951–2959Google Scholar
  45. Son KL, Choi JS, Lee J, Park SM, Lim JA, Lee JY, Kim SN, Oh S, Kim DJ, Kwon JS (2015) Neurophysiological features of Internet gaming disorder and alcohol use disorder: a resting-state EEG study. Transl Psychiatry 5:e628CrossRefPubMedPubMedCentralGoogle Scholar
  46. Vapnik V (2013) The nature of statistical learning theory. Springer, BerlinGoogle Scholar
  47. Vinck M, Oostenveld R, Van Wingerden M, Battaglia F, Pennartz CM (2011) An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55(4):1548–1565CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wang GY, Kydd R, Wouldes TA, Jensen M, Russell BR (2015a) Changes in resting EEG following methadone treatment in opiate addicts. Clin Neurophysiol 126(5):943–950CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wang Z, Suh J, Li Z, Li Y, Franklin T, O’Brien C, Childress AR (2015b) A hyper-connected but less efficient small-world network in the substance-dependent brain. Drug Alcohol Depend 152:102–108CrossRefPubMedPubMedCentralGoogle Scholar
  50. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’networks. Nature 393(6684):440CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wetherill RR, Rao H, Hager N, Wang J, Franklin TR, Fan Y (2018) Classifying and characterizing nicotine use disorder with high accuracy using machine learning and resting-state fMRI. Addict Biol 24(4):811–821CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhao Q, Jiang H, Hu B, Li Y, Zhong N, Li M, Lin W, Liu Q (2017) Nonlinear dynamic complexity and sources of resting-state eeg in abstinent heroin addicts. IEEE Trans Nanobiosci 16(5):349–355CrossRefGoogle Scholar
  53. Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ (2018) Neuroimaging impaired response inhibition and salience attribution in human drug addiction: a systematic review. Neuron 98(5):886–903CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Medical Physics and Biomedical Engineering, School of MedicineTehran University of Medical Sciences (TUMS)TehranIran
  2. 2.Laureate Institute for Brain Research (LIBR)TulsaUSA
  3. 3.Iranian National Center for Addiction Studies (INCAS)Tehran University of Medical Sciences (TUMS)TehranIran
  4. 4.Department of Medical Physics and Biomedical Engineering, School of MedicineShahid Beheshti University of Medical Sciences (SBMU)TehranIran
  5. 5.Iranian Center of Neurological Research, Neuroscience InstituteTehran University of Medical Sciences (TUMS)TehranIran
  6. 6.Research Center for Biomedical Technology and Robotics (RCBTR), Institute of Advanced Medical Technologies (IAMT)Tehran University of Medical Sciences (TUMS)TehranIran

Personalised recommendations