Advertisement

Cognitive Neurodynamics

, Volume 13, Issue 6, pp 601–611 | Cite as

Temperature effect on memristive ion channels

  • Ying Xu
  • Jun Ma
  • Xuan Zhan
  • Lijian Yang
  • Ya JiaEmail author
Research Article

Abstract

Neuron shows distinct dependence of electrical activities on membrane patch temperature, and the mode transition of electrical activity is induced by the patch temperature through modulating the opening and closing rates of ion channels. In this paper, inspired by the physical effect of memristor, the potassium and sodium ion channels embedded in the membrane patch are updated by using memristor-based voltage gate variables, and an external stimulus is applied to detect the variety of mode selection in electrical activities under different patch temperatures. It is found that each ion channel can be regarded as a physical memristor, and the shape of pinched hysteresis loop of memristor is dependent on both input voltage and patch temperature. The pinched hysteresis loops of two ion-channel memristors are dramatically enlarged by increasing patch temperature, and the hysteresis lobe areas are monotonously reduced with the increasing of excitation frequency if the frequency of external stimulus exceeds certain threshold. However, for the memristive potassium channel, the AREA1 corresponding to the threshold frequency is increased with the increasing of patch temperature. The amplitude of conductance for two ion-channel memristors depends on the variation of patch temperature. The results of this paper might provide insights to modulate the neural activities in appropriate temperature condition completely, and involvement of external stimulus enhance the effect of patch temperature.

Keywords

Pinched hysteresis loop Ion channels Patch temperature Memristor 

Notes

References

  1. Adhikari SP, Sah PdM, Kim H, Chua L (2013) Three fingerprints of memristor. IEEE Trans Circuits-I 60(11):3008–3021CrossRefGoogle Scholar
  2. Bao B, Hu A, Bao H, Xu Q, Chen M, Wu H (2018) Three-dimensional memristive Hindmarsh–Rose neuron model with hidden coexisting asymmetric behaviors. Complexity. Article ID 3872573Google Scholar
  3. Biolek Z, Biolek D, Biolkova V (2012) Computation of the area of memristor pinched hysteresis loop. IEEE Trans Circuits-II 59(9):670–671Google Scholar
  4. Chua L (2015) Everything you wish to know about memristor but are afraid to ask. Radioengin 24(2):319–368CrossRefGoogle Scholar
  5. Chua L, Kang SM (1976) Memristive devices and systems. Proc IEEE 64(2):209CrossRefGoogle Scholar
  6. Chua L, Sbitnev V, Kim H (2012) Hodgkin–Huxley axon is made of memristors. Int J Bifurc Chaos 22(3):1230011CrossRefGoogle Scholar
  7. Correa AM, Bezanilla F, Latorre R (1992) Gating kinetics of batrachotoxin-modified Na + channels in the squid giant axon voltage and temperature effects. Biophys J 61(5):1332–1352CrossRefPubMedPubMedCentralGoogle Scholar
  8. FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ge M, Jia Y, John BK, Xu Y, Shen J, Lu L, Liu Y, Pei Q, Zhan X, Yang L (2018) Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh–Rose neural network. Neurocomputing 320:60–68CrossRefGoogle Scholar
  10. Ge M, Jia Y, Xu Y, Lu L, Wang H, Zhao Y (2019) Wave propagation and synchronization induced by chemical autapse in chain feed-forward Hindmarsh–Rose neural network. Appl Math Comput 352:136–145Google Scholar
  11. Guo D, Perc M, Zhang Y (2017) Frequency-difference dependent stochastic resonance in neural systems. Phys Rev E 96(2):022415CrossRefPubMedPubMedCentralGoogle Scholar
  12. Guo D, Gan J, Tan T, Tian X, Wang G, Tak-Pan Ng K (2018) Neonatal exposure of ketamine inhibited the induction of hippocampal long-term potentiation without impairing the spatial memory of adult rats. Cogn Neurodyn 12:377–383CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hindmarsh JL, Rose RM (1982) A model of the nerve impulse using two first-order differential equations. Nature 296(5853):162–164CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B 221(1222):87–102CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hodgkin AL, Huxley AF (1952) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 116(4):497–506CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hyun NG, Hyun KH, Hyun KB, Han JH, Lee K, Kaang BK (2011) A computational model of the temperature-dependent changes in firing patterns in aplysia neurons. Korean J Physiol Pharmacol 15(6):371–382CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ji X, Hu X, Zhou Y, Dong Z, Duan S (2019) Adaptive sparse coding based on memristive neural network with applications. Cogn Neurodyn.  https://doi.org/10.1007/s11571-019-09537-w CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jia B, Gu H, Xue L (2017) A basic bifurcation structure from bursting to spiking of injured nerve fibers in a two-dimensional parameter space. Cogn Neurodyn 11(2):189–200CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lu L, Jia Y, Xu Y, Ge M, Pei Q, Yang L (2019a) Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci China Technol Sci 62(3):427–440CrossRefGoogle Scholar
  20. Lu L, Jia Y, Kirunda JB, Xu Y, Ge M, Pei Q, Yang L (2019b) Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn 95(2):1673–1686CrossRefGoogle Scholar
  21. Ma J, Huang L, Tang J, Ying H, Jin W (2012) Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin–Huxley neuronal networks. Commun Nonlinear Sci 17(11):4281–4293CrossRefGoogle Scholar
  22. Ma J, Zhang G, Hayat T, Ren G (2019) Model electrical activity of neuron under electric field. Nonlinear Dyn 95:1585–1598CrossRefGoogle Scholar
  23. Maio VD, Santillo S, Sorgente A, Vanacore P, Ventriglia F (2018) Influence of active synaptic pools on the single synaptic event. Cogn Neurodyn 12:391–402CrossRefPubMedPubMedCentralGoogle Scholar
  24. Micheva KD, Smith SJ (2005) Strong effects of subphysiological temperature on the function and plasticity of mammalian presynaptic terminals. J Neurosci 25(33):7481–7488CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mondal A, Upadhyay RK, Ma J, Yadav BK, Sharma SK, Mondal A (2019) Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn Neurodyn.  https://doi.org/10.1007/s11571-019-09526-z CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nordenfelt A, Used J, Sanjuán MA (2013) Bursting frequency versus phase synchronization in time-delayed neuron networks. Phys Rev E 87(5):052903CrossRefGoogle Scholar
  27. Ozer M, Uzuntarla M, Perc M, Grahamc LJ (2009) Spike latency and jitter of neuronal membrane patches with stochastic Hodgkin–Huxley channels. J Theor Biol 261(1):83–92CrossRefPubMedPubMedCentralGoogle Scholar
  28. Perc M (2007) Effects of small-world connectivity on noise-induced temporal and spatial order in neural media. Chaos 31(2):280–291Google Scholar
  29. Prousalis DA, Volos CK, Stouboulos IN, Kyprianidis IM (2017) Hyperchaotic memristive system with hidden attractors and its adaptive control scheme. Nonlinear Dyn 90(3):1681–1694CrossRefGoogle Scholar
  30. Rajamani V, Sah MPD, Mannan ZI, Kim H, Chua L (2017) Third-order memristive Morris–Lecar model of barnacle muscle fiber. Int J Bifurc Chaos 27(4):1730015CrossRefGoogle Scholar
  31. Szabo TM, Brookings T, Preuss T, Faber DS (2008) Effects of temperature acclimation on a central neural circuit and its behavioral output. J Neurophysiol 100(6):2997CrossRefPubMedPubMedCentralGoogle Scholar
  32. Thottil SK, Ignatius RP (2016) Nonlinear feedback coupling in Hindmarsh–Rose neurons. Nonlinear Dyn 87(3):1879–1899CrossRefGoogle Scholar
  33. Tian C, Cao L, Bi H, Xu K, Liu Z (2018) Chimera states in neuronal networks with time delay and electromagnetic induction. Nonlinear Dyn 93(3):1695–1704CrossRefGoogle Scholar
  34. Volkov AG, Reedus J, Mitchell CM, Tucket C, Forde-Tuckett V, Volkova MI, Markin VS, Chua L (2014) Memristors in the electrical network of Aloe vera L. Plant Signal Behav 9(7):e29056CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wang R, Jiao X (2006) Stochastic model and neural coding of large-scale neuronal population with variable coupling strength. Neurocomputing 69(7–9):778–785CrossRefGoogle Scholar
  36. Wang C, Ma J (2018) A review and guidance for pattern selection in spatiotemporal system. Int J Mod Phys B 32(6):1830003CrossRefGoogle Scholar
  37. Wang YH, Wang R (2017) An improved neuronal energy model that better captures of dynamic property of neuronal activity. Nonlinear Dyn 91(1):319–327CrossRefGoogle Scholar
  38. Wang R, Zhang Z (2007) Energy coding in biological neural network. Cogn Neurodyn 1(3):203–212CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wang R, Zhu Y (2016) Can the activities of the large scale cortical network be expressed by neural energy? A brief review. Cogn Neurodyn 10(1):1–5CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wang Q, Perc M, Duan Z, Chen G (2010) Spatial coherence resonance in delayed in delayed Hodgkin–Huxley neuronal networks. Int J Mod Phys B 24(09):1201–1213CrossRefGoogle Scholar
  41. Wang Z, Wang R, Fang R (2015) Energy coding in neural network with inhibitory neurons. Cogn Neurodyn 9(2):129–144CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wang C, Lin Q, Yao Y, Yang K, Tian M, Wang Y (2018) Dynamics of a stochastic system driven by cross-correlated sine-Wiener bounded noises. Nonlinear Dyn.  https://doi.org/10.1007/s11071-018-4669-0 CrossRefGoogle Scholar
  43. Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24CrossRefPubMedPubMedCentralGoogle Scholar
  44. Xu Y, Ying H, Jia Y, Ma J, Hayat T (2017) Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci Rep 7:43452CrossRefPubMedPubMedCentralGoogle Scholar
  45. Xu Y, Jia Y, Ge M, Lu L, Yang L, Zhan X (2018a) Effects of ion channel blocks on electrical activity of stochastic Hodgkin–Huxley neural network under electromagnetic induction. Neurocomputing 283:196–204CrossRefGoogle Scholar
  46. Xu Y, Jia Y, Kirunda JB, Shen J, Ge M, Lu L, Pei Q (2018b) Dynamic behaviors in coupled neurons system with the excitatory and inhibitory autapse under electromagnetic induction. Complexity 2018:3012743Google Scholar
  47. Xu Y, Jia Y, Wang HW, Liu Y, Wang P, Zhao Y (2019) Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn 95(4):3237–3247CrossRefGoogle Scholar
  48. Yang L, Jia Y (2005) Effects of patch temperature on spontaneous action potential train due to channel fluctuations: coherence resonance. Biosystems 81(3):267–280CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yao Y, Ma J (2018) Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh–Nagumo neuron. Cogn Neurodyn 12(3):343–349CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yao C, Zhan M, Shuai J, Ma J, Kurths J (2017) Insensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling. Chaos 27:126702CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhu F, Wang R, Pan X, Zhu Z (2019) Energy expenditure computation of a single bursting neuron. Cogn Neurodyn 13(1):75–78CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhysicsCentral China Normal UniversityWuhanChina
  2. 2.Department of PhysicsLanzhou University of TechnologyLanzhouChina
  3. 3.School of ScienceChongqing University of Posts and TelecommunicationsChongqingChina
  4. 4.NAAM-Research Group, Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations