Cognitive Neurodynamics

, Volume 13, Issue 6, pp 579–599 | Cite as

A cortical model with multi-layers to study visual attentional modulation of neurons at the synaptic level

  • Tao Zhang
  • Xiaochuan PanEmail author
  • Xuying Xu
  • Rubin Wang
Research Article


Visual attention is a selective process of visual information and improves perceptual performance by modulating activities of neurons in the visual system. It has been reported that attention increased firing rates of neurons, reduced their response variability and improved reliability of coding relevant stimuli. Recent neurophysiological studies demonstrated that attention also enhanced the synaptic efficacy between neurons mediated through NMDA and AMPA receptors. Majority of computational models of attention usually are based on firing rates, which cannot explain attentional modulations observed at the synaptic level. To understand mechanisms of attentional modulations at the synaptic level, we proposed a neural network consisting of three layers, corresponding to three different brain regions. Each layer has excitatory and inhibitory neurons. Each neuron was modeled by the Hodgkin–Huxley model. The connections between neurons were through excitatory AMPA and NMDA receptors, as well as inhibitory GABAA receptors. Since the binding process of neurotransmitters with receptors is stochastic in the synapse, it is hypothesized that attention could reduce the variation of the stochastic binding process and increase the fraction of bound receptors in the model. We investigated how attention modulated neurons’ responses at the synaptic level on the basis of this hypothesis. Simulated results demonstrated that attention increased firing rates of neurons and reduced their response variability. The attention-induced effects were stronger in higher regions compared to those in lower regions, and stronger for inhibitory neurons than for excitatory neurons. In addition, AMPA receptor antagonist (CNQX) impaired attention-induced modulations on neurons’ responses, while NMDA receptor antagonist (APV) did not. These results suggest that attention may modulate neuronal activity at the synaptic level.


Visual attention AMPA and NMDA receptors Stochastic binding process Hodgkin–Huxley model 



This study was funded by National Natural Science Foundation of China (Nos. 11232005, 11472104, 11702096, 11872180) and sponsored by Shanghai Pujiang Program (No. 13PJ1402000).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Anderson EB, Mitchell JF, Reynolds JH (2013) Attention-dependent reductions in burstiness and action potential height in macaque area V4. Nat Neurosci 16(8):1125–1131CrossRefPubMedPubMedCentralGoogle Scholar
  2. Antonerxleben K, Carrasco M (2013) Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence. Nat Rev Neurosci 14(3):188–200CrossRefGoogle Scholar
  3. Ardid S, Wang XJ, Compte A (2007) An integrated microcircuit model of attentional processing in the neocortex. J Neurosci 27(32):8486CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ardid S, Wang XJ, Gomezcabrero D, Compte A (2010) Reconciling coherent oscillation with modulation of irregular spiking activity in selective attention: gamma-range synchronization between sensory and executive cortical areas. J Neurosci 30(8):2856CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ardid S, Vinck M, Kaping D, Marquez S, Everling S, Womelsdorf T (2015) Mapping of functionally characterized cell classes onto canonical circuit operations in primate prefrontal cortex. J Neurosci 35(7):2975–2991CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2004) Potassium model for slow (2-3 Hz) in vivo neocortical paroxysmal oscillations. J Neurophysiol 92(2):1116–1132CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beuth F, Hamker FH (2015) A mechanistic cortical microcircuit of attention for amplification, normalization and suppression. Vision Res 116(12):241–257CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boynton GM (2009) A framework for describing the effects of attention on visual responses. Vision Res 49(10):1129–1143CrossRefPubMedPubMedCentralGoogle Scholar
  9. Briggs F, Mangun GR, Usrey WM (2013) Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits. Nature 499(7459):476–480. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Buehlmann A, Deco G (2008) The neuronal basis of attention: rate versus synchronization modulation. J Neurosci 28(30):7679–7686CrossRefPubMedPubMedCentralGoogle Scholar
  11. Buia C, Tiesinga P (2006) Attentional modulation of firing rate and synchrony in a model cortical network. J Comput Neurosci 20(3):247–264CrossRefPubMedPubMedCentralGoogle Scholar
  12. Buia CI, Tiesinga PH (2008) Role of interneuron diversity in the cortical microcircuit for attention. J Neurophysiol 99(5):2158–2182CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carrasco M (2011) Visual attention: the past 25 years. Vision Res 51(13):1484–1525CrossRefPubMedPubMedCentralGoogle Scholar
  14. Carrasco M, Ling S, Read S (2004) Attention alters appearance. Nat Neurosci 7(3):308–313CrossRefPubMedPubMedCentralGoogle Scholar
  15. Deco G, Lee TS (2015) The role of early visual cortex in visual integration: a neural model of recurrent interaction. Eur J Neurosci 20(4):1089–1100CrossRefGoogle Scholar
  16. Deco G, Thiele A (2011) Cholinergic control of cortical network interactions enables feedback-mediated attentional modulation. Eur J Neurosci 34(1):146–157CrossRefPubMedPubMedCentralGoogle Scholar
  17. Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81(4):1531–1547CrossRefPubMedPubMedCentralGoogle Scholar
  18. Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1):13–24CrossRefPubMedPubMedCentralGoogle Scholar
  19. Destexhe A, Mainen Z, Sejnowski T (2008) An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Comput 6(1):14–18CrossRefGoogle Scholar
  20. Di Maio V, Ventriglia F, Santillo S (2017) Stochastic, structural and functional factors influencing AMPA and NMDA synaptic response variability: a review. Neuronal Signaling. CrossRefGoogle Scholar
  21. Dobrunz LE, Stevens CF (1997) Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18(6):995–1008CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fan H, Pan X, Wang R, Sakagami M (2017) Differences in reward processing between putative cell types in primate prefrontal cortex. PLoS ONE 12(12):e0189771CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gardner JL (2015) A case for human systems neuroscience. Neuroscience 296:130–137CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gazzaniga EBMS (2004) The cognitive neurosciences, 3rd edn. MIT Press, CambridgeGoogle Scholar
  25. Gibb AJ (1978) Neurotransmitter receptor binding. Raven* Google Scholar
  26. Gratton C, Yousef S, Aarts E, Wallace DL, D’Esposito M, Silver MA (2017) Cholinergic, but not dopaminergic or noradrenergic, enhancement sharpens visual spatial perception in humans. The Journal of Neuroscience 37(16):4405–4415CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gravier A, Quek C, Duch W, Wahab A, Gravier-Rymaszewska J (2016) Neural network modelling of the influence of channelopathies on reflex visual attention. Cogn Neurodyn 10(1):49–72. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Guo DQ, Wang QY, Perc M (2012) Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys Rev E 85(6):061905CrossRefGoogle Scholar
  29. Guo DQ, Chen MM, Perc M, Wu SD, Xia C, Zhang YS et al (2016a) Firing regulation of fast-spiking interneurons by autaptic inhibition. EPL 114(3):30001CrossRefGoogle Scholar
  30. Guo DQ, Wu SD, Chen MM, Perc M, Zhang YS, Ma JL et al (2016b) Regulation of irregular neuronal firing by autaptic transmission. Scientific Reports 6:26096CrossRefPubMedPubMedCentralGoogle Scholar
  31. Haab L, Trenado C, Strauss DJ (2009) Modeling the influence of the hippocampal comparator function on selective attention according to stimulus–novelty. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  32. Haab L, Trenado C, Mai M, Strauss DJJCN (2011) Neurofunctional model of large-scale correlates of selective attention governed by stimulus-novelty. Cogn Neurodyn 5(1):103–111CrossRefPubMedPubMedCentralGoogle Scholar
  33. Herrero JL, Roberts MJ, Delicato LS, Gieselmann MA, Dayan P, Thiele A (2008) Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454(7208):1110–1114CrossRefPubMedPubMedCentralGoogle Scholar
  34. Herrero JL, Gieselmann MA, Sanayei M, Thiele A (2013) Attention-induced variance and noise correlation reduction in macaque V1 is mediated by NMDA receptors. Neuron 78(4):729–739CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hodgkin AL, Huxley AF (1989) A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull Math Biol 52(1–2):25–71Google Scholar
  36. Ison MJ, Mormann F, Cerf M, Koch C, Fried I, Quiroga RQ (2011) Selectivity of pyramidal cells and interneurons in the human medial temporal lobe. J Neurophysiol 106(4):1713–1721CrossRefPubMedPubMedCentralGoogle Scholar
  37. Itti L, Koch C (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res 40(10):1489–1506CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kanashiro T, Ocker GK, Cohen MR, Doiron B (2017) Attentional modulation of neuronal variability in circuit models of cortex. Elife. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Klinkenberg I, Sambeth A, Blokland A (2011) Acetylcholine and attention. Behav Brain Res 221:430–442CrossRefPubMedPubMedCentralGoogle Scholar
  40. Koch C (1989) Methods in neuronal modeling: from synapses to networks. MIT Press, CambridgeGoogle Scholar
  41. Lanyon LJ, Denham SLJCN (2009) Modelling attention in individual cells leads to a system with realistic saccade behaviours. Cognit Neurodyn 3(3):223–242CrossRefGoogle Scholar
  42. Lee J, Maunsell JH (2010) Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields. J Neurosci 30(8):3058–3066CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mitchell JF, Sundberg KA, Reynolds JH (2007) Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 55(1):131–141CrossRefGoogle Scholar
  44. Parhizi B, Daliri MR, Behroozi M (2018) Decoding the different states of visual attention using functional and effective connectivity features in fMRI data. Cogn Neurodyn 12(2):157–170. CrossRefPubMedGoogle Scholar
  45. Phillips MA, Constantine-Paton M (2009) NMDA receptors and development. Encyclopedia of Neuroscience, 1165–1175Google Scholar
  46. Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76:116–129CrossRefPubMedPubMedCentralGoogle Scholar
  47. Posner MI, Petersen SE (2012) The attention system of the human brain. Annu Rev Neurosci 13(1):25–42CrossRefGoogle Scholar
  48. Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Frégnac Y et al (2008) Minimal hodgkin–huxley type models for different classes of cortical and thalamic neurons. Biol Cybern 99(4–5):427–441CrossRefPubMedPubMedCentralGoogle Scholar
  49. Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron 61(2):168–185CrossRefPubMedPubMedCentralGoogle Scholar
  50. Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci 19(5):1736–1753CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sommer MA (2007) Microcircuits for attention. Neuron 55(1):6–8CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sprague CT, Saproo S, Serences JT (2015) Visual attention mitigates information loss in small- and large-scale neural codes. Trends in Cognitive Sciences 19(4):215–226CrossRefPubMedPubMedCentralGoogle Scholar
  53. Thiele A, Bellgrove MA (2018) Neuromodulation of attention. Neuron 97:769–785CrossRefPubMedPubMedCentralGoogle Scholar
  54. Thiele A, Brandt C, Dasilva M, Gotthardt S, Chicharro D, Panzeri S et al (2016) Attention induced gain stabilization in broad and narrow-spiking cells in the frontal eye-field of macaque monkeys. J Neurosci 36(29):7601–7612CrossRefPubMedPubMedCentralGoogle Scholar
  55. Treue S, Maunsell JH (2005) Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J Neurosci 19(17):7591–7602CrossRefGoogle Scholar
  56. Ueda M, Shibata T (2007) Stochastic signal processing and transduction in chemotactic response of eukaryotic cells. Biophys J 93(1):11–20. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Varela JA, Dupuis JP, Etchepare L, Espana A, Cognet L, Groc L (2016) Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices. Nat Commun 7:10947. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wagatsuma N, Potjans TC, Diesmann M, Sakai K, Fukai T (2013) Spatial and feature-based attention in a layered cortical microcircuit model. PLoS ONE 8(12):e80788CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yang H, Xu-Friedman MA (2013) Stochastic properties of neurotransmitter release expand the dynamic range of synapses. J Neurosci 33(36):14406CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zhang HH, Wang QY, Perc M, Chen GR (2013) Synaptic plasticity induced transition of spike propagation in neuronal networks. Commun Nonlinear Sci Numer Simul 18(3):601–615CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute for Cognitive NeurodynamicsEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations