Cognitive Neurodynamics

, Volume 12, Issue 5, pp 509–518 | Cite as

Vibrational resonance in a randomly connected neural network

  • Yingmei Qin
  • Chunxiao Han
  • Yanqiu CheEmail author
  • Jia ZhaoEmail author
Research Article


A randomly connected network is constructed with similar characteristics (e.g., the ratio of excitatory and inhibitory neurons, the connection probability between neurons, and the axonal conduction delays) as that in the mammalian neocortex and the effects of high-frequency electrical field on the response of the network to a subthreshold low-frequency electrical field are studied in detail. It is found that both the amplitude and frequency of the high-frequency electrical field can modulate the response of the network to the low-frequency electric field. Moreover, vibrational resonance (VR) phenomenon induced by the two types of electrical fields can also be influenced by the network parameters, such as the neuron population, the connection probability between neurons and the synaptic strength. It is interesting that VR is found to be related with the ratio of excitatory neurons that are under high-frequency electrical stimuli. In summary, it is suggested that the interaction of excitatory and inhibitory currents is also an important factor that can influence the performance of VR in neural networks.


Vibrational resonance Neural network Izhikevich neuron model Weak electric field 



This work is supported by the National Natural Science Foundation of China (No. 61431013), the Natural Science Foundation of Tianjin (Nos. 17JCQNJC03700 and 15JCYBJC19000), the Tianjin Municipal Special Program of Talents Development for Excellent Youth Scholars, and the Fundamental Research Funds for the Central Universities (No. SWU1709620). We would also acknowledge the support of Tianjin University of Technology and Education (No. KYQD14006).


  1. Ağaoğlu SN, Çalim A, Özer M, Uzuntarla M (2016) Effects of synaptic heterogeneity on vibrational resonance in biological neural networks. In: Medical technologies national congress (TIPTEKNO), pp 1–4Google Scholar
  2. Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL (2013) Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 78(3):510–522CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benzi R, Sutera A, Vulpiani A (1981) The mechanism of stochastic resonance. J Phys A Math Gen 14(11):L453–L457CrossRefGoogle Scholar
  4. Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, Jefferys JG (2004) Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 557(1):175–190CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chavet LE, Kasschau M, Datta A, Knotkova H, Stevens MC, Alonzo A, Loo C, Krull KR, Bikson M (2015) Remotely-supervised transcranial direct current stimulation (tdcs) for clinical trials: guidelines for technology and protocols. Front Syst Neurosci 9:26Google Scholar
  6. Chizhevsky VN (2008) Analytical study of vibrational resonance in an overdamped bistable oscillator. Int J Bifurc Chaos 18(6):1767–1773CrossRefGoogle Scholar
  7. Chizhevsky VN, Giacomelli G (2005) Improvement of signal-to-noise ratio in a bistable optical system: comparison between vibrational and stochastic resonance. Phys Rev A 71(1):011801CrossRefGoogle Scholar
  8. Deans JK, Powell AD, Jefferys JGR (2007) Sensitivity of coherent oscillations in rat hippocampus to ac electric fields. J Physiol 583(2):555–565CrossRefPubMedPubMedCentralGoogle Scholar
  9. Deng B, Wang J, Wei X, Tsang KM, Chan WL (2010) Vibrational resonance in neuron populations. Chaos 20(1):013113CrossRefPubMedGoogle Scholar
  10. Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402(6761):529–533CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fraccalvieri M, Salomone M, Zingarelli EM, Rivarossa F, Bruschi S (2015) Electrical stimulation for difficult wounds: only an alternative procedure? Int Wound J 12(6):669–673CrossRefPubMedGoogle Scholar
  12. Fregni F, Boggio PS, Lima MC, Ferreira MJL, Wagner T, Rigonatti SP, Castro AW, Souza DR, Riberto M, Freedman SD, Nitsche MA, Pascual-Leone A (2006) A sham-controlled, phase ii trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122(1–2):197–209CrossRefPubMedGoogle Scholar
  13. Fröehlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67(1):129–143CrossRefGoogle Scholar
  14. Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70(1):223–287CrossRefGoogle Scholar
  15. Gravier A, Quek C, Duch W, Wahab A, Gravier-Rymaszewska J (2016) Neural network modelling of the influence of channelopathies on reflex visual attention. Cogn Neurodyn 10(1):49–72CrossRefPubMedGoogle Scholar
  16. Guo D, Li C (2011) Signal propagation in feedforward neuronal networks with unreliable synapses. J Comput Neurosci 30(3):567–587CrossRefPubMedGoogle Scholar
  17. Haider B, McCormick DA (2009a) Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62(2):171–189CrossRefPubMedPubMedCentralGoogle Scholar
  18. Haider B, McCormick DA (2009b) Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62(2):171–189CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hånell A, Greer JE, Jacobs KM (2015) Increased network excitability due to altered synaptic inputs to neocortical layer v intact and axotomized pyramidal neurons after mild traumatic brain injury. J Neurotrauma 32(20):1590–1598CrossRefPubMedPubMedCentralGoogle Scholar
  20. Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64(5):872–875CrossRefPubMedGoogle Scholar
  21. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572CrossRefPubMedGoogle Scholar
  22. Kawaguchi M, Mino H, Durand DM (2011) Stochastic resonance can enhance information transmission in neural networks. IEEE Trans Biomed Eng 58(7):1950–1958CrossRefPubMedGoogle Scholar
  23. Kim SY, Lim W (2017) Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network. Cogn Neurodyn 11(5):395–413CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kirov R, Weiss C, Siebner HR, Born J, Marshall L (2009) Slow oscillation electrical brain stimulation during waking promotes eeg theta activity and memory encoding. Proc Natl Acad Sci USA 106(36):15460–15465CrossRefPubMedGoogle Scholar
  25. Kreuz T, Luccioli S, Torcini A (2006) Double coherence resonance in neuron models driven by discrete correlated noise. Phys Rev Lett 97(23):238101CrossRefPubMedGoogle Scholar
  26. Kumar A, Rotter S, Aertsen A (2010) Spiking activity propagation in neuronal networks: reconciling different persepctives on neural coding. Nat Rev Neurosci 11(9):615–627CrossRefPubMedPubMedCentralGoogle Scholar
  27. Li X, Wang J, Hu W (2007) Effects of chemical synapses on the enhancement of signal propagation in coupled neurons near the canard regime. Phys Rev E 76(4):041902CrossRefGoogle Scholar
  28. Liebetanz D, Klinker F, Hering D, Koch R, Nitsche MA, Potschka H, Löscher W, Paulus W, Tergau F (2006) Antoconvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia 47(7):1216–1224CrossRefPubMedGoogle Scholar
  29. Lyamzin DR, Barnes SJ, Donato R, Garcia-Lazaro JA, Keck T, Lesica NA (2015) Nonlinear transfer of signal and noise correlations in cortical networks. J Neurosci 35(21):8065–8080CrossRefPubMedPubMedCentralGoogle Scholar
  30. Megam Ngouonkadi EB, Fotsin HB, Kabong Nono M, Louodop Fotso PH (2016) Noise effects on robust synchronization of a small pacemaker neuronal ensemble via nonlinear controller: electronic circuit design. Cogn Neurodyn 10(5):385–404CrossRefPubMedPubMedCentralGoogle Scholar
  31. Men C, Wang J, Qin YM, Deng B, Tsang KM, Chan WL (2012) Propagation of spiking regularity and double coherence resonance in feedforward networks. Chaos 22(1):013104CrossRefPubMedGoogle Scholar
  32. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(3):633–639CrossRefPubMedPubMedCentralGoogle Scholar
  33. Okun M, Steinmetz NA, Cossell L, Iacaruso MF, Ko H, Bartho P, Moore T, Hofer SB, Mrsic-Flogel TD, Carandini M, Harris KD (2015) Diverse coupling of neurons to populations in sensory cortex. Nature 521(7553):511–515CrossRefPubMedPubMedCentralGoogle Scholar
  34. Pogosyan A, Gaynor LD, Eusebio A, Brown P (2009) Boosting cortical activity at beta-band frequencies slows movement in humans. Curr Biol 19(19):1637–1641CrossRefPubMedPubMedCentralGoogle Scholar
  35. Qin YM, Wang J, Men C, Deng B, Xl Wei (2011) Vibrational resonance in feedforward network. Chaos 21(2):023133CrossRefPubMedGoogle Scholar
  36. Qin YM, Wang J, Men C, Deng B, Wei XL, Yu HT, Chan WL (2014) Stochastic resonance in feedforward acupuncture networks. Commun Nonlinear Sci 19(10):3660–3670CrossRefGoogle Scholar
  37. Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul 2(4):215–228CrossRefPubMedPubMedCentralGoogle Scholar
  38. Reato D, Rahman A, Bikson M, Parra LC (2010) Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci 30(45):15067–15079CrossRefPubMedPubMedCentralGoogle Scholar
  39. Renart A, de la Rocha J, Bartho P, Hollender L, Parge N, Reyes A, Harris KD (2010) The asychronous state in cortical circuits. Science 327(5965):587–590CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stacey WC, Durand DM (2002) Noise and coupling affect signal detection and bursting in a simulated physiological neural network. J Neurophysiol 88(5):2598–2611CrossRefPubMedGoogle Scholar
  41. Sun J, Deng B, Liu C, Yu H, Wang J, Wei X, Zhao J (2013) Vibrational resonance in neuron populations with hybrid synapses. Appl Math Model 37(9):6311–6324CrossRefGoogle Scholar
  42. Thomson JM, Doruk D, Mascio B, Fregni F, Cerruti C (2015) Transcranial direct current stimulation modulates efficiency of reading processes. Front Hum Neurosci 9:114CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ullner E, Zaikin A, García-Ojalvo J, Báscones R, Kurths J (2003) Vibrational resonance and vibrational propagation in excitable systems. Phys Lett A 312(5):348–354CrossRefGoogle Scholar
  44. Xue M, Wang J, Deng B, Wei X (2013) Vibrational resonance in feedforward neuronal network with unreliable synapses. Eur Phys J B 86:122CrossRefGoogle Scholar
  45. Yu H, Wang J, Liu C, Deng B, Wei X (2011) Vibrational resonance in excitable neuronal systems. Chaos 21(4):043101CrossRefPubMedGoogle Scholar
  46. Yu H, Guo X, Wang J, Deng B, Wei X (2014) Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks. Chaos 24(3):033125CrossRefPubMedGoogle Scholar
  47. Yu H, Guo X, Wang J, Deng B, Wei X (2015) Vibrational resonance in adaptive small-world neuronal networks with spike-timing-dependent plasticity. Physica A 436(26):170–179CrossRefGoogle Scholar
  48. Zaikin AA, López L, Baltanás JP, Kurths J, Sanjuán MA (2002) Vibrational resonance in a noise-induced structure. Phys Rev E 66(1):011106CrossRefGoogle Scholar
  49. Zhao J, Deng B, Qin Y, Men C, Wang J, Wei X, Sun J (2017) Weak electric fields detectability in a noisy neural network. Cogn Neurodyn 11(1):81–90CrossRefPubMedGoogle Scholar
  50. Zhao J, Qin YM, Che YQ (2018) Effects of topologies on signal propagation in feedforward networks. Chaos 28(1):013117CrossRefPubMedGoogle Scholar
  51. Zhou CS, Kurths J, Hu BB (2003) Frequency and phase locking of noise-sustained oscillations in coupled excitable systems: array-enhanced resonances. Phys Rev E 67(3):030101CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Information Sensing and Intelligent Control, School of Automation and Electrical EngineeringTianjin University of Technology and EducationTianjinChina
  2. 2.Key Laboratory of Cognition and Personality (Ministry of Education) and Faculty of PsychologySouthwest UniversityChongqingChina
  3. 3.Chongqing Collaborative Innovation Center for Brain ScienceChongqingChina

Personalised recommendations