Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Geschlechtsunterschiede bei der diabetischen Nephropathie

Sex differences in diabetic nephropathy

  • 10 Accesses

Zusammenfassung

Hintergrund

Die Forderungen nach individualisierter und geschlechtsorientierter Medizin werden immer lauter. Es ist unbestritten, dass viele Erkrankungen die Geschlechter ungleich beeinflussen, dennoch gibt es teilweise große Diskrepanzen zwischen dem „typischen Patienten“ und dem „typischen Studiensubjekt“ in klinischen Zulassungsstudien. Auch bei der Entstehung und Progression der diabetischen Nephropathie (DN) könnten bestehende Geschlechtsunterschiede eine wichtige Rolle bei der Prophylaxe und Behandlung in der klinischen Praxis spielen.

Fragestellung

Zusammenfassung und Überblick der bisherigen und neuesten Erkenntnisse zu möglichen Geschlechtsunterschieden bei der DN und der Beteiligung der Sexualhormone und anderer Faktoren an der geschlechtsabhängigen Pathogenese.

Methoden

Dieser Beitrag basiert auf Reviews und Originalartikeln, die bis November 2019 publiziert wurden. Es wurde eine umfassende PubMed/MEDLINE-Recherche mit Schlüsselwörtern in jeweils unterschiedlichen Suchkombinationen durchgeführt.

Ergebnisse und Diskussion

Im Gegensatz zu nichtdiabetischen Nierenerkrankungen wird bei der DN weiterhin kontrovers diskutiert, welches Geschlecht einen potenziellen Risikofaktor darstellt. Es scheinen viele Faktoren, wie Diabetestyp, Dauer der Erkrankung, Alter bei Auftreten der Erkrankung oder Sexualhormonhaushalt, eine Rolle dabei zu spielen, ob sich eine DN entwickelt und wie schwer sie verläuft. Tiefere Einblicke in geschlechtsabhängige Mechanismen in der Pathophysiologie der DN können von großem therapeutischen Nutzen sein und einen wichtigen Beitrag zur Individualmedizin leisten.

Abstract

Background

The demands for individualized and gender-oriented medicine are becoming louder. There is no doubt that many diseases affect both sexes differently; nevertheless, there are some large discrepancies between the “typical patient” and the “typical study subject” in clinical approval studies. In the development and progression of diabetic nephropathy (DN) possible gender differences could also play an important role in the prophylaxis and treatment in clinical practice.

Objective

This article gives a summary and overview of the previous and recent knowledge on possible sex differences in DN and the contribution of sex hormones and other factors to the gender-dependent pathogenesis.

Methods

This article is based on reviews and original articles published up to November 2019. A global PubMed/MEDLINE enquiry was performed and key search terms were used in different search combinations.

Results and conclusion

In contrast to non-diabetic kidney diseases in DN the question of which sex represents a potential risk factor is still controversially discussed. It seems that many factors, such as the type of diabetes mellitus, duration of the disease, age at onset of the disease and the sex hormone levels play a role in whether DN develops and how severe the progress will be. Deeper insights into the gender-dependent mechanisms of the pathophysiology of DN could be of great therapeutic benefit and make an important contribution to individualized medicine.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2

Literatur

  1. 1.

    Martinez-Castelao A, Navarro-Gonzalez JF, Gorriz JL et al (2015) The concept and the epidemiology of diabetic nephropathy have changed in recent years. J Clin Med 4(6):1207–1216

  2. 2.

    Alicic RZ, Rooney MT, Tuttle KR (2017) Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 12(12):2032–2045

  3. 3.

    Wolf G (2004) New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 34(12):785–796

  4. 4.

    Caramori ML, Mauer M (2003) Diabetes and nephropathy. Curr Opin Nephrol Hypertens 12(3):273–282

  5. 5.

    diabetesDE – Deutsche Diabetes-Hilfe und Deutsche Diabetes Gesellschaft (DDG) (2015) Deutscher Gesundheitsbericht Diabetes 2016

  6. 6.

    Maric C (2009) Sex, diabetes and the kidney. Am J Physiol Renal Physiol 296(4):F680–F688

  7. 7.

    Ravid M, Brosh D, Ravid-Safran D et al (1998) Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch Intern Med 158(9):998–1004

  8. 8.

    Lee SK (2018) Sex as an important biological variable in biomedical research. BMB Rep 51(4):167–173

  9. 9.

    No authors listed (2010) Putting gender on the agenda. Nature 465:665

  10. 10.

    Advisory Group for Gender (2016) For a better integration of the gender dimension in the horizon 2020 work programme 2018-2020. https://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupDetailDoc&id=28824&no=1. Zugegriffen: 6. Dez. 2019

  11. 11.

    Silbiger SR, Neugarten J (1995) The impact of gender on the progression of chronic renal disease. Am J Kidney Dis 25(4):515–533

  12. 12.

    Neugarten J, Acharya A, Silbiger SR (2000) Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol 11(2):319–329

  13. 13.

    Jafar TH, Schmid CH, Stark PC et al (2003) The rate of progression of renal disease may not be slower in women compared with men: a patient-level meta-analysis. Nephrol Dial Transplant 18(10):2047–2053

  14. 14.

    Coggins CH, Breyer Lewis J, Caggiula AW et al (1998) Differences between women and men with chronic renal disease. Nephrol Dial Transplant 13(6):1430–1437

  15. 15.

    Silbiger S, Neugarten J (2008) Gender and human chronic renal disease. Gend Med 5(A):S3–S10

  16. 16.

    Eriksen BO, Ingebretsen OC (2006) The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age. Kidney Int 69(2):375–382

  17. 17.

    Garovic VD, August P (2016) Sex differences and renal protection: keeping in touch with your feminine side. J Am Soc Nephrol 27(10):2921–2924

  18. 18.

    Deutsche Diabetes Gesellschaft (2019) Evidenzbasierte Leitlinien. https://www.deutsche-diabetes-gesellschaft.de/leitlinien/evidenzbasierte-leitlinien.html. Zugegriffen: 6. Dez. 2019

  19. 19.

    Maric-Bilkan C (2017) Sex differences in micro- and macro-vascular complications of diabetes mellitus. Clin Sci (Lond) 131(9):833–846

  20. 20.

    Kautzky-Willer A, Handisurya A (2009) Metabolic diseases and associated complications: sex and gender matter! Eur J Clin Invest 39(8):631–648

  21. 21.

    Maric C, Sullivan S (2008) Estrogens and the diabetic kidney. Gend Med 5(A):S103–113

  22. 22.

    Jacobsen P, Rossing K, Tarnow L et al (1999) Progression of diabetic nephropathy in normotensive type 1 diabetic patients. Kidney Int Suppl 71:S101–105

  23. 23.

    Mangili R, Deferrari G, Di Mario U et al (1994) Arterial hypertension and microalbuminuria in IDDM: the Italian microalbuminuria study. Diabetologia 37(10):1015–1024

  24. 24.

    Raile K, Galler A, Hofer S et al (2007) Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex. Diabetes Care 30(10):2523–2528

  25. 25.

    Breyer JA, Bain RP, Evans JK et al (1996) Predictors of the progression of renal insufficiency in patients with insulin-dependent diabetes and overt diabetic nephropathy. The collaborative study group. Kidney Int 50(5):1651–1658

  26. 26.

    Rossing P, Hougaard P, Parving HH (2002) Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic patients: a 10-year prospective observational study. Diabetes Care 25(5):859–864

  27. 27.

    Orchard TJ, Dorman JS, Maser RE et al (1990) Prevalence of complications in IDDM by sex and duration. Pittsburgh epidemiology of diabetes complications study II. Diabetes 39(9):1116–1124

  28. 28.

    Zhang L, Krzentowski G, Albert A et al (2003) Factors predictive of nephropathy in DCCT Type 1 diabetic patients with good or poor metabolic control. Diabet Med 20(7):580–585

  29. 29.

    Sibley SD, Thomas W, de Boer I et al (2006) Gender and elevated albumin excretion in the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) cohort: role of central obesity. Am J Kidney Dis 47(2):223–232

  30. 30.

    Holl RW, Grabert M, Thon A et al (1999) Urinary excretion of albumin in adolescents with type 1 diabetes: persistent versus intermittent microalbuminuria and relationship to duration of diabetes, sex, and metabolic control. Diabetes Care 22(9):1555–1560

  31. 31.

    Schultz CJ, Konopelska-Bahu T, Dalton RN et al (1999) Microalbuminuria prevalence varies with age, sex, and puberty in children with type 1 diabetes followed from diagnosis in a longitudinal study. Oxford regional prospective study group. Diabetes Care 22(3):495–502

  32. 32.

    Laron-Kenet T, Shamis I, Weitzman S et al (2001) Mortality of patients with childhood onset (0–17 years) type I diabetes in Israel: a population-based study. Diabetologia 44(3):B81–86

  33. 33.

    Dahlquist G, Kallen B (2005) Mortality in childhood-onset type 1 diabetes: a population-based study. Diabetes Care 28(10):2384–2387

  34. 34.

    Harvey JN (2011) The influence of sex and puberty on the progression of diabetic nephropathy and retinopathy. Diabetologia 54(8):1943–1945

  35. 35.

    Amin R, Schultz C, Ong K et al (2003) Low IGF‑I and elevated testosterone during puberty in subjects with type 1 diabetes developing microalbuminuria in comparison to normoalbuminuric control subjects: the Oxford regional prospective study. Diabetes Care 26(5):1456–1461

  36. 36.

    Maric C, Forsblom C, Thorn L et al (2010) Association between testosterone, estradiol and sex hormone binding globulin levels in men with type 1 diabetes with nephropathy. Steroids 75(11):772–778

  37. 37.

    Harjutsalo V, Maric-Bilkan C, Forsblom C et al (2016) Age at menarche and the risk of diabetic microvascular complications in patients with type 1 diabetes. Diabetologia 59(3):472–480

  38. 38.

    Torffvit O, Agardh CD (2001) The impact of metabolic and blood pressure control on incidence and progression of nephropathy. A 10-year study of 385 type 2 diabetic patients. J Diabetes Complications 15(6):307–313

  39. 39.

    Parving HH, Gall MA, Skott P et al (1992) Prevalence and causes of albuminuria in non-insulin-dependent diabetic patients. Kidney Int 41(4):758–762

  40. 40.

    Nakano S, Ogihara M, Tamura C et al (1999) Reversed circadian blood pressure rhythm independently predicts endstage renal failure in non-insulin-dependent diabetes mellitus subjects. J Diabetes Complications 13(4):224–231

  41. 41.

    Lewis EJ, Hunsicker LG, Rodby RA et al (2001) A clinical trial in type 2 diabetic nephropathy. Am J Kidney Dis 38(4):S191–194

  42. 42.

    Keane WF, Brenner BM, de Zeeuw D et al (2003) The risk of developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the RENAAL study. Kidney Int 63(4):1499–1507

  43. 43.

    Crook ED, Patel SR (2004) Diabetic nephropathy in African-American patients. Curr Diab Rep 4(6):455–461

  44. 44.

    Looker HC, Krakoff J, Funahashi T et al (2004) Adiponectin concentrations are influenced by renal function and diabetes duration in Pima Indians with type 2 diabetes. J Clin Endocrinol Metab 89(8):4010–4017

  45. 45.

    Young BA, Maynard C, Boyko EJ (2003) Racial differences in diabetic nephropathy, cardiovascular disease, and mortality in a national population of veterans. Diabetes Care 26(8):2392–2399

  46. 46.

    Kautzky-Willer A, Harreiter J, Pacini G (2016) Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev 37(3):278–316

  47. 47.

    Olivarius Nde F, Vestbo E, Andreasen AH et al (2001) Renal involvement is related to body height in newly diagnosed diabetic women aged 40 years or over. Diabetes Metab 27(1):14–18

  48. 48.

    Diamond-Stanic MK, You YH, Sharma K (2012) Sugar, sex, and TGF-beta in diabetic nephropathy. Semin Nephrol 32(3):261–268

  49. 49.

    Salonia A, Lanzi R, Scavini M et al (2006) Sexual function and endocrine profile in fertile women with type 1 diabetes. Diabetes Care 29(2):312–316

  50. 50.

    Xu Q, Wells CC, Garman JH et al (2008) Imbalance in sex hormone levels exacerbates diabetic renal disease. Hypertension 51(4):1218–1224

  51. 51.

    Clotet S, Riera M, Pascual J et al (2016) RAS and sex differences in diabetic nephropathy. Am J Physiol Renal Physiol 310(10):F945–F957

  52. 52.

    Ahmed SB, Ramesh S (2016) Sex hormones in women with kidney disease. Nephrol Dial Transplant 31(11):1787–1795

  53. 53.

    Hadjadj S, Gourdy P, Zaoui P et al (2007) Effect of raloxifene—a selective oestrogen receptor modulator—on kidney function in post-menopausal women with type 2 diabetes: results from a randomized, placebo-controlled pilot trial. Diabet Med 24(8):906–910

  54. 54.

    Ahmed SB, Hovind P, Parving HH et al (2005) Oral contraceptives, angiotensin-dependent renal vasoconstriction, and risk of diabetic nephropathy. Diabetes Care 28(8):1988–1994

  55. 55.

    Loeffler I, Wolf G (2017) Pathophysiologie der diabetischen Nephropathie. Nephrologe 12(6):391–399

  56. 56.

    Lane PH, Snelling DM, Babushkina-Patz N et al (2001) Sex differences in the renal transforming growth factor-beta 1 system after puberty. Pediatr Nephrol 16(1):61–68

  57. 57.

    Rossing P, Persson F, Frimodt-Moller M (2018) Prognosis and treatment of diabetic nephropathy: recent advances and perspectives. J Nephrol Ther 14(1):S31–S37

  58. 58.

    No authors listed (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK prospective diabetes study (UKPDS) group. Lancet 352(9131):854–865

  59. 59.

    Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group et al (2000) Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med 342(6):381–389

  60. 60.

    Giugliano D, Maiorino MI, Bellastella G et al (2019) GLP‑1 receptor agonists for prevention of cardiorenal outcomes in type 2 diabetes: an updated meta-analysis including the REWIND and PIONEER 6 trials. Diabetes Obes Metab 21(11):2576–2580

  61. 61.

    Heerspink HJ, Desai M, Jardine M et al (2017) Canagliflozin slows progression of renal function decline independently of glycemic effects. J Am Soc Nephrol 28(1):368–375

  62. 62.

    Takashima H, Yoshida Y, Nagura C et al (2018) Renoprotective effects of canagliflozin, a sodium glucose cotransporter 2 inhibitor, in type 2 diabetes patients with chronic kidney disease: a randomized open-label prospective trial. Diab Vasc Dis Res 15(5):469–472

  63. 63.

    Perkovic V, Jardine MJ, Neal B et al (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380(24):2295–2306

  64. 64.

    Marso SP, Poulter NR, Nissen SE et al (2013) Design of the liraglutide effect and action in diabetes: evaluation of cardiovascular outcome results (LEADER) trial. Am Heart J 166(5):823–830

  65. 65.

    Davidson JA (2019) SGLT2 inhibitors in patients with type 2 diabetes and renal disease: overview of current evidence. Postgrad Med 131(4):251–260

  66. 66.

    Parving HH, Andersen AR, Smidt UM et al (1983) Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet 1(8335):1175–1179

  67. 67.

    Parving HH, Lehnert H, Brochner-Mortensen J et al (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345(12):870–878

  68. 68.

    Brenner BM, Cooper ME, de Zeeuw D et al (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345(12):861–869

  69. 69.

    Persson F, Theilade S, Eugen-Olsen J et al (2016) Renin angiotensin system blockade reduces urinary levels of soluble urokinase plasminogen activator receptor (suPAR) in patients with type 2 diabetes. J Diabetes Complications 30(8):1440–1442

  70. 70.

    Mauer M, Zinman B, Gardiner R et al (2009) Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 361(1):40–51

  71. 71.

    Ruggenenti P, Fassi A, Ilieva AP et al (2004) Preventing microalbuminuria in type 2 diabetes. N Engl J Med 351(19):1941–1951

  72. 72.

    Haller H, Ito S, Izzo JL Jr. et al (2011) Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med 364(10):907–917

  73. 73.

    Lewis EJ, Hunsicker LG, Bain RP et al (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The collaborative study group. N Engl J Med 329(20):1456–1462

  74. 74.

    Sarafidis PA, Memmos E, Alexandrou ME et al (2018) Mineralocorticoid receptor antagonists for nephroprotection: current evidence and future perspectives. Curr Pharm Des 24(46):5528–5536

  75. 75.

    Heerspink HJL, Parving HH, Andress DL et al (2019) Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet 393(10184):1937–1947

Download references

Author information

Correspondence to PD Dr. I. Löffler.

Ethics declarations

Interessenkonflikt

I. Löffler und G. Wolf geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

H. Haller, Hannover

G. Wolf, Jena

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Löffler, I., Wolf, G. Geschlechtsunterschiede bei der diabetischen Nephropathie. Nephrologe (2020). https://doi.org/10.1007/s11560-020-00409-7

Download citation

Schlüsselwörter

  • Diabetesbedingte Nierenerkrankung
  • Geschlechtsunterschiede
  • Testosteron
  • Estradiol
  • TGF-β1

Keywords

  • Diabetes-related kidney disease
  • Sex/gender differences
  • Testosterone
  • Estradiol
  • Transforming growth factor beta 1