Advertisement

Autosomal-dominante tubulointerstitielle Nierenerkrankungen (ADTKD)

  • K. X. Knaup
  • M. S. WiesenerEmail author
Leitthema
  • 22 Downloads

Zusammenfassung

Hereditäre Nierenerkrankungen, v. a. solche mit adultem Beginn, sind mit Ausnahme der autosomal-dominanten polyzystischen Nierenerkrankung (ADPKD) aus verschiedenen Gründen unterdiagnostiziert. Darunter bilden die autosomal-dominanten tubulointerstitiellen Nierenerkrankungen (ADTKD) die wohl größte, heterogene Gruppe von hereditären Erkrankungen des Erwachsenenalters. Bei negativer oder unbekannter Familienanamnese sowie aufgrund der häufig nicht durchgeführten, zudem zwischen ADTKD und potenziell vorliegenden anderen Krankheitsentitäten oft nur mangelhaft differenzierenden Nierenbiopsie führt lediglich die molekulargenetische Analyse zu einer sicheren Zuordnung der Erkrankung. In diesem Beitrag werden das klinische Erscheinungsbild der ADTKD, deren Unterformen mit den bisher als ursächlich identifizierten heterozygoten Mutationen in 5 Kandidatengenen, sowie die möglichen Differenzialdiagnosen und Pathomechanismen beschrieben. Darüber hinaus werden bereits bestehende therapeutische Ansätze zur Verzögerung der Progression der Niereninsuffizienz vorgestellt sowie die zukünftig notwendigen Maßnahmen und Resultate der klinischen wie auch der Grundlagenforschung diskutiert, welche den Weg zu spezifischen und somit effektiveren therapeutischen Interventionen bahnen könnten.

Schlüsselwörter

Hereditäre Erkrankungen  Niereninsuffizienz Fibrose Genetik Molekulargenetische Diagnostik 

Autosomal dominant tubulointerstitial kidney diseases (ADTKD)

Abstract

Hereditary kidney diseases, particularly those with onset in adulthood, are underdiagnosed due to various reasons, with the exception of autosomal dominant polycystic kidney disease (ADPKD). Among these the autosomal dominant tubulointerstitial kidney diseases (ADTKD) form the largest heterogeneous group of hereditary diseases in adulthood. In cases of negative or unknown family history and a frequently not carried out kidney biopsy, which additionally often only achieves an insufficient differentiation between ADTKD and other potential disease entities, only a molecular genetic analysis leads to a clear classification of the disease. This article describes the clinical phenotype of ADTKD, the subtypes with the so far identified causal heterozygous mutations in 5 candidate genes, as well as the possible differential diagnoses and pathomechanisms. In addition, the already existing treatment approaches for delaying the progression of renal insufficiency are presented. The future necessary measures and results of clinical and also basic research, which could lead the way to specific and therefore more effective treatment interventions are discussed.

Keywords

Hereditary diseases Renal insufficiency Fibrosis Genetics Molecular genetic diagnostics 

Notes

Förderung

Die wissenschaftlichen Arbeiten werden von der Deutschen Forschungsgemeinschaft (DFG) unterstützt (WI 1581/4-1 und SFB 1350, Projektnummer 387509280, Teilprojekt C4).

Einhaltung ethischer Richtlinien

Interessenkonflikt

K.X. Knaup und M.S. Wiesener geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Eckardt KU, Alper SL, Antignac C, Bleyer AJ, Chauveau D, Dahan K et al (2015) Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management-A KDIGO consensus report. Kidney Int 88:676–683PubMedCrossRefGoogle Scholar
  2. 2.
    Knaup KX, Hackenbeck T, Popp B, Stoeckert J, Wenzel A, Buttner-Herold M et al (2018) Biallelic expression of mucin-1 in autosomal dominant tubulointerstitial kidney disease: implications for nongenetic disease recognition. J Am Soc Nephrol 29:2298–2309PubMedCrossRefGoogle Scholar
  3. 3.
    Kirby A, Gnirke A, Jaffe DB, Baresova V, Pochet N, Blumenstiel B et al (2013) Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat Genet 45:299–303PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hart TC, Gorry MC, Hart PS, Woodard AS, Shihabi Z, Sandhu J et al (2002) Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet 39:882–892PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Zivna M, Hulkova H, Matignon M, Hodanova K, Vylet’al P, Kalbacova M et al (2009) Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am J Hum Genet 85:204–213PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lindner TH, Njolstad PR, Horikawa Y, Bostad L, Bell GI, Sovik O (1999) A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1beta. Hum Mol Genet 8:2001–2008PubMedCrossRefGoogle Scholar
  7. 7.
    van Putten JPM, Strijbis K (2017) Transmembrane mucins: signaling receptors at the intersection of inflammation and cancer. J Innate Immun 9:281–299PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Devuyst O, Olinger E, Rampoldi L (2017) Uromodulin: from physiology to rare and complex kidney disorders. Nat Rev Nephrol 13:525–544PubMedCrossRefGoogle Scholar
  9. 9.
    Kottgen A, Glazer NL, Dehghan A, Hwang SJ, Katz R, Li M et al (2009) Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet 41:712–717PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Trudu M, Janas S, Lanzani C, Debaix H, Schaeffer C, Ikehata M et al (2013) Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med 19:1655–1660PubMedCrossRefGoogle Scholar
  11. 11.
    Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4:45–60PubMedCrossRefGoogle Scholar
  12. 12.
    Pemberton LF, Rughetti A, Taylor-Papadimitriou J, Gendler SJ (1996) The epithelial mucin MUC1 contains at least two discrete signals specifying membrane localization in cells. J Biol Chem 271:2332–2340PubMedCrossRefGoogle Scholar
  13. 13.
    Christodoulou K, Tsingis M, Stavrou C, Eleftheriou A, Papapavlou P, Patsalis PC et al (1998) Chromosome 1 localization of a gene for autosomal dominant medullary cystic kidney disease. Hum Mol Genet 7:905–911PubMedCrossRefGoogle Scholar
  14. 14.
    Bleyer AJ, Kmoch S, Antignac C, Robins V, Kidd K, Kelsoe JR et al (2014) Variable clinical presentation of an MUC1 mutation causing medullary cystic kidney disease type 1. Clin J Am Soc Nephrol 9:527–535PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ekici AB, Hackenbeck T, Moriniere V, Pannes A, Buettner M, Uebe S et al (2014) Renal fibrosis is the common feature of autosomal dominant tubulointerstitial kidney diseases caused by mutations in mucin 1 or uromodulin. Kidney Int 86:589–599PubMedCrossRefGoogle Scholar
  16. 16.
    Zivna M, Kidd K, Pristoupilova A, Baresova V, DeFelice M, Blumenstiel B et al (2018) Noninvasive Immunohistochemical diagnosis and novel MUC1 mutations causing autosomal dominant tubulointerstitial kidney disease. J Am Soc Nephrol 29:2418–2431PubMedCrossRefGoogle Scholar
  17. 17.
    Wenzel A, Altmueller J, Ekici AB, Popp B, Stueber K, Thiele H et al (2018) Single molecule real time sequencing in ADTKD-MUC1 allows complete assembly of the VNTR and exact positioning of causative mutations. Sci Rep 8:4170PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Yamamoto S, Kaimori JY, Yoshimura T, Namba T, Imai A, Kobayashi K et al (2017) Analysis of an ADTKD family with a novel frameshift mutation in MUC1 reveals characteristic features of mutant MUC1 protein. Nephrol Dial Transplant 32:2010–2017PubMedCrossRefGoogle Scholar
  19. 19.
    Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM (2014) Classical renin-angiotensin system in kidney physiology. Compr Physiol 4:1201–1228PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Paul M, Poyan Mehr A, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86:747–803PubMedCrossRefGoogle Scholar
  21. 21.
    Beck BB, Trachtman H, Gitman M, Miller I, Sayer JA, Pannes A et al (2011) Autosomal dominant mutation in the signal peptide of renin in a kindred with anemia, hyperuricemia, and CKD. Am J Kidney Dis 58:821–825PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bleyer AJ, Zivna M, Hulkova H, Hodanova K, Vyletal P, Sikora J et al (2010) Clinical and molecular characterization of a family with a dominant renin gene mutation and response to treatment with fludrocortisone. Clin Nephrol 74:411–422PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Clissold RL, Clarke HC, Spasic-Boskovic O, Brugger K, Abbs S, Bingham C et al (2017) Discovery of a novel dominant mutation in the REN gene after forty years of renal disease: a case report. BMC Nephrol 18:234PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bleyer AJ, Kidd K, Zivna M, Kmoch S (2017) Autosomal dominant tubulointerstitial kidney disease. Adv Chronic Kidney Dis 24:86–93PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Edghill EL, Bingham C, Ellard S, Hattersley AT (2006) Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet 43:84–90PubMedCrossRefGoogle Scholar
  26. 26.
    Verhave JC, Bech AP, Wetzels JF, Nijenhuis T (2016) Hepatocyte nuclear factor 1beta-associated kidney disease: more than renal cysts and diabetes. J Am Soc Nephrol 27:345–353PubMedCrossRefGoogle Scholar
  27. 27.
    Ferre S, Igarashi P (2018) New insights into the role of HNF-1beta in kidney (patho)physiology. Pediatr Nephrol.  https://doi.org/10.1007/s00467-018-3990-7 PubMedCrossRefGoogle Scholar
  28. 28.
    Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN et al (1997) Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 17:384–385PubMedCrossRefGoogle Scholar
  29. 29.
    Hiesberger T, Bai Y, Shao X, McNally BT, Sinclair AM, Tian X et al (2004) Mutation of hepatocyte nuclear factor-1beta inhibits Pkhd1 gene expression and produces renal cysts in mice. J Clin Invest 113:814–825PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    van der Ven AT, Connaughton DM, Ityel H, Mann N, Nakayama M, Chen J et al (2018) Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol 29:2348–2361PubMedCrossRefGoogle Scholar
  31. 31.
    Fontana L, Gentilin B, Fedele L, Gervasini C, Miozzo M (2017) Genetics of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome. Clin Genet 91:233–246PubMedCrossRefGoogle Scholar
  32. 32.
    Faguer S, Decramer S, Chassaing N, Bellanne-Chantelot C, Calvas P, Beaufils S et al (2011) Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood. Kidney Int 80:768–776PubMedCrossRefGoogle Scholar
  33. 33.
    Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR et al (1996) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:432–438PubMedCrossRefGoogle Scholar
  34. 34.
    Bolar NA, Golzio C, Zivna M, Hayot G, Van Hemelrijk C, Schepers D et al (2016) Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am J Hum Genet 99:174–187PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Connor TM, Hoer S, Mallett A, Gale DP, Gomez-Duran A, Posse V et al (2017) Mutations in mitochondrial DNA causing tubulointerstitial kidney disease. PLoS Genet 13:e1006620PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Braun DA, Hildebrandt F (2017) Ciliopathies. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a028191 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Brown EJ, Schlondorff JS, Becker DJ, Tsukaguchi H, Tonna SJ, Uscinski AL et al (2010) Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet 42:72–76PubMedCrossRefGoogle Scholar
  38. 38.
    Spicer AP, Rowse GJ, Lidner TK, Gendler SJ (1995) Delayed mammary tumor progression in Muc-1 null mice. J Biol Chem 270:30093–30101PubMedCrossRefGoogle Scholar
  39. 39.
    Bachmann S, Mutig K, Bates J, Welker P, Geist B, Gross V et al (2005) Renal effects of Tamm-Horsfall protein (uromodulin) deficiency in mice. Am J Physiol Renal Physiol 288:F559–67PubMedCrossRefGoogle Scholar
  40. 40.
    Raffi H, Bates JM, Laszik Z, Kumar S (2006) Tamm-Horsfall protein knockout mice do not develop medullary cystic kidney disease. Kidney Int 69:1914–1915PubMedCrossRefGoogle Scholar
  41. 41.
    Rampoldi L, Caridi G, Santon D, Boaretto F, Bernascone I, Lamorte G et al (2003) Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum Mol Genet 12:3369–3384PubMedCrossRefGoogle Scholar
  42. 42.
    Bernascone I, Vavassori S, Di Pentima A, Santambrogio S, Lamorte G, Amoroso A et al (2006) Defective intracellular trafficking of uromodulin mutant isoforms. Traffic 7:1567–1579PubMedCrossRefGoogle Scholar
  43. 43.
    Choi SW, Ryu OH, Choi SJ, Song IS, Bleyer AJ, Hart TC (2005) Mutant tamm-horsfall glycoprotein accumulation in endoplasmic reticulum induces apoptosis reversed by colchicine and sodium 4‑phenylbutyrate. J Am Soc Nephrol 16:3006–3014PubMedCrossRefGoogle Scholar
  44. 44.
    Williams SE, Reed AA, Galvanovskis J, Antignac C, Goodship T, Karet FE et al (2009) Uromodulin mutations causing familial juvenile hyperuricaemic nephropathy lead to protein maturation defects and retention in the endoplasmic reticulum. Hum Mol Genet 18:2963–2974PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kemter E, Frohlich T, Arnold GJ, Wolf E, Wanke R (2017) Mitochondrial dysregulation secondary to endoplasmic reticulum stress in autosomal dominant tubulointerstitial kidney disease—UMOD (ADTKD-UMOD). Sci Rep 7:42970PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Schaeffer C, Merella S, Pasqualetto E, Lazarevic D, Rampoldi L (2017) Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response. PLoS ONE 12:e175970PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kropski JA, Blackwell TS (2018) Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J Clin Invest 128:64–73PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Cybulsky AV (2017) Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol 13:681–696PubMedCrossRefGoogle Scholar
  49. 49.
    Groopman EE et al (2019) Diagnostic utility of exome sequencing for kidney disease. N Engl J Med 380(2):142–151.  https://doi.org/10.1056/NEJMoa1806891 PubMedCrossRefGoogle Scholar
  50. 50.
    Freedman BI, Volkova NV, Satko SG, Krisher J, Jurkovitz C, Soucie JM et al (2005) Population-based screening for family history of end-stage renal disease among incident dialysis patients. Am J Nephrol 25:529–535PubMedCrossRefGoogle Scholar
  51. 51.
    Skrunes R, Svarstad E, Reisaeter AV, Vikse BE (2014) Familial clustering of ESRD in the Norwegian population. Clin J Am Soc Nephrol 9:1692–1700PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chriic kidney disease. Kidney Int Suppl 3:1–150CrossRefGoogle Scholar
  53. 53.
    Stavrou C, Deltas CC, Christophides TC, Pierides A (2003) Outcome of kidney transplantation in autosomal dominant medullary cystic kidney disease type 1. Nephrol Dial Transplant 18:2165–2169PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Nephrologie und Hypertensiologie, Medizinische Klinik 4Universitätsklinikum ErlangenErlangenDeutschland

Personalised recommendations