Advertisement

Hämolytisch-urämisches Syndrom im Kindes- und Jugendalter

  • J. Holle
  • D. MüllerEmail author
  • K. Häffner
Leitthema
  • 16 Downloads

Zusammenfassung

Das hämolytisch-urämische Syndrom (HUS) ist eine häufige Ursache des akuten, intrarenalen Nierenversagens im Kindesalter und durch die Trias aus mikroangiopathischer, hämolytischer Anämie, Thrombozytopenie und akuter Nierenfunktionseinschränkung charakterisiert. Pathophysiologisch entsteht ein HUS im Kindesalter meist durch eine Infektion mit shigatoxinproduzierenden E. coli (STEC-HUS), in der Regel enterohämorrhagischen E. coli (EHEC). Eine unkontrollierte Aktivierung des Komplementsystems, ausgelöst durch verschiedene Triggerfaktoren auf der Grundlage einer genetischen Prädisposition, spielt beim komplementvermittelten HUS eine entscheidende Rolle. Die Rolle des Komplementsystems bei anderen Formen des HUS (z. B. durch Infektionen insbesondere mit Pneumokokken, durch Stammzell- oder Organtransplantation) ist noch nicht abschließend geklärt. Die Therapie des HUS erfolgt als supportive Behandlung des akuten oder chronischen Nierenversagens. Bei einer bestehenden Dysregulation im Komplementsystem (ehemals atypisches HUS) stellt der C5-blockierende Antikörper Eculizumab eine spezifische therapeutische Möglichkeit dar, wodurch sich das Outcome der Erkrankung signifikant gebessert hat. Die Einteilung der Erkrankung sowie konkrete Empfehlungen bezüglich der Art und Dauer einer möglichen therapeutischen Komplementinhibition unterliegen häufigen Modifikationen aufgrund zahlreicher Erkenntnisgewinne aus prospektiven klinischen und experimentellen Studien.

Schlüsselwörter

Pädiatrie Akutes Nierenversagen EHEC Komplementdysregulation Eculizumab 

Hemolytic uremic syndrome in childhood and adolescence

Abstract

The hemolytic uremic syndrome (HUS) is a frequent cause of acute intrarenal kidney failure in childhood. It is characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia and acute renal failure. Pathophysiologically, the most common cause of HUS in childhood are shiga toxin-producing E. coli (STEC-HUS), generally enterohemorrhagic E. coli (EHEC). An uncontrolled activation of the complement system triggered by various factors in the background of an underlying genetic predisposition, plays a decisive role in complement-mediated HUS. The role of the complement system in other forms of HUS (e. g. associated with infections particularly with pneumococci, or with stem cell or solid organ transplantation) is presently unclear. The treatment of HUS includes mainly the supportive treatment of acute or chronic kidney failure. For patients with a dysregulation in the complement system (formerly atypical HUS) the C5 blocking antibody eculizumab is a specific treatment option, which has significantly improved the short and long-term outcome of these patients. The classification of HUS and final recommendations with respect to the type and duration of a possible therapeutic complement inhibition is subject to frequent modifications due to increasing knowledge gained from prospective clinical and experimental studies.

Keywords

Pediatrics Acute kidney injury Enterohemorrhagic Escherichia coli Complement dysregulation Eculizumab 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Holle, D. Müller haben Reisesponsoring durch die Firma Alexion Pharma GmbH erhalten. K. Häffner hat Reisesponsoring und Forschungsförderung der Firma greenovation Biotech GmbH erhalten.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Agger M, Scheutz F, Villumsen S et al (2015) Antibiotic treatment of verocytotoxin-producing Escherichia coli (VTEC) infection: A systematic review and a proposal. J Antimicrob Chemother 70:2440–2446PubMedCrossRefGoogle Scholar
  2. 2.
    Ahlenstiel-Grunow T, Hachmeister S, Bange FC et al (2016) Systemic complement activation and complement gene analysis in enterohaemorrhagic Escherichia coli-associated paediatric haemolytic uraemic syndrome. Nephrol Dial Transplant 31:1114–1121PubMedCrossRefGoogle Scholar
  3. 3.
    Ardissino G, Possenti I, Tel F et al (2015) Discontinuation of eculizumab treatment in atypical hemolytic uremic syndrome: An update. Am J Kidney Dis 66:172–173PubMedCrossRefGoogle Scholar
  4. 4.
    Ardissino G, Salardi S, Berra S et al (2017) Acquired complement regulatory gene mutations and hematopoietic stem cell transplant-related thrombotic microangiopathy. Biol Blood Marrow Transplant 23:1580–1582PubMedCrossRefGoogle Scholar
  5. 5.
    Arvidsson I, Stahl AL, Hedstrom MM et al (2015) Shiga toxin-induced complement-mediated hemolysis and release of complement-coated red blood cell-derived microvesicles in hemolytic uremic syndrome. J Immunol 194:2309–2318PubMedCrossRefGoogle Scholar
  6. 6.
    Asif A, Nayer A, Haas CS (2017) Atypical hemolytic uremic syndrome in the setting of complement-amplifying conditions: Case reports and a review of the evidence for treatment with eculizumab. J Nephrol 30:347–362PubMedCrossRefGoogle Scholar
  7. 7.
    Bitzan M, Zieg J (2018) Influenza-associated thrombotic microangiopathies. Pediatr Nephrol 11:2009–2025CrossRefGoogle Scholar
  8. 8.
    Brady TM, Pruette C, Loeffler LF et al (2016) Typical HUS: Evidence of acute phase complement activation from a daycare outbreak. J Clin Exp Nephrol.  https://doi.org/10.21767/2472-5056.100011 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Caillaud C, Zaloszyc A, Licht C et al (2016) CFH gene mutation in a case of Shiga toxin-associated hemolytic uremic syndrome (STEC-HUS). Pediatr Nephrol 31:157–161PubMedCrossRefGoogle Scholar
  10. 10.
    Coppo P, Schwarzinger M, Buffet M et al (2010) Predictive features of severe acquired ADAMTS13 deficiency in idiopathic thrombotic microangiopathies: The French TMA reference center experience. PLoS ONE 5:e10208PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dinh A, Anathasayanan A, Rubin LM (2015) Safe and effective use of eculizumab in the treatment of severe Shiga toxin Escherichia coli-associated hemolytic uremic syndrome. Am J Health Syst Pharm 72:117–120PubMedCrossRefGoogle Scholar
  12. 12.
    Dowen F, Wood K, Brown AL et al (2017) Rare genetic variants in Shiga toxin-associated haemolytic uraemic syndrome: Genetic analysis prior to transplantation is essential. Clin Kidney J 10:490–493PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Dragon-Durey MA, Sethi SK, Bagga A et al (2010) Clinical features of anti-factor H autoantibody-associated hemolytic uremic syndrome. J Am Soc Nephrol 21:2180–2187PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Fakhouri F (2016) Pregnancy-related thrombotic microangiopathies: Clues from complement biology. Transfus Apher Sci 54:199–202PubMedCrossRefGoogle Scholar
  15. 15.
    Fakhouri F, Fila M, Provot F et al (2017) Pathogenic variants in complement genes and risk of atypical hemolytic uremic syndrome relapse after eculizumab discontinuation. Clin J Am Soc Nephrol 12:50–59PubMedCrossRefGoogle Scholar
  16. 16.
    Fremeaux-Bacchi V, Fakhouri F, Garnier A et al (2013) Genetics and outcome of atypical hemolytic uremic syndrome: A nationwide French series comparing children and adults. Clin J Am Soc Nephrol 8:554–562PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gilbert RD, Nagra A, Haq MR (2013) Does dysregulated complement activation contribute to haemolytic uraemic syndrome secondary to Streptococcus pneumoniae? Med Hypotheses 81:400–403PubMedCrossRefGoogle Scholar
  18. 18.
    Holle J, Lange-Sperandio B, Mache C et al (2017) Hämolytisch-urämisches Syndrom im Kindes- und Jugendalter. Monatsschr Kinderheilkd 165:1005–1008CrossRefGoogle Scholar
  19. 19.
    Robert Koch Institut (2015) Infektionsepidemiologisches Jahrbuch für 2014 (76–80, 118–120)CrossRefGoogle Scholar
  20. 20.
    Jodele S, Licht C, Goebel J et al (2013) Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy. Blood 122:2003–2007PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Karpman D, Tati R (2016) Complement contributes to the pathogenesis of Shiga toxin-associated hemolytic uremic syndrome. Kidney Int 90:726–729PubMedCrossRefGoogle Scholar
  22. 22.
    Kerr H, Wong E, Makou E et al (2017) Disease-linked mutations in factor H reveal pivotal role of cofactor activity in self-surface-selective regulation of complement activation. J Biol Chem 292:13345–13360PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kincaid J, Cataland S, Walle JV et al (2015) 971: Effect of early initiation of eculizumab in patients with aHUS on renal outcomes: A pooled anaylsis. Crit Care Med 43:244CrossRefGoogle Scholar
  24. 24.
    Kose O, Zimmerhackl LB, Jungraithmayr T et al (2010) New treatment options for atypical hemolytic uremic syndrome with the complement inhibitor eculizumab. Semin Thromb Hemost 36:669–672PubMedCrossRefGoogle Scholar
  25. 25.
    Kuehne A, Bouwknegt M, Havelaar A et al (2016) Estimating true incidence of O157 and non-O157 Shiga toxin-producing Escherichia coli illness in Germany based on notification data of haemolytic uraemic syndrome. Epidemiol Infect 144(15):3305–3315PubMedCrossRefGoogle Scholar
  26. 26.
    Legendre CM, Licht C, Muus P et al (2013) Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med 368:2169–2181PubMedCrossRefGoogle Scholar
  27. 27.
    Lemaire M, Fremeaux-Bacchi V, Schaefer F et al (2013) Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet 45:531–536PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Licht C, Greenbaum LA, Muus P et al (2015) Efficacy and safety of eculizumab in atypical hemolytic uremic syndrome from 2‑year extensions of phase 2 studies. Kidney Int 87:1061–1073PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Loirat C, Fakhouri F, Ariceta G et al (2015) An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol 31:15–39PubMedCrossRefGoogle Scholar
  30. 30.
    Loirat C, Fremeaux-Bacchi V (2011) Atypical hemolytic uremic syndrome. Orphanet J Rare Dis 6:60PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Macia M, De Alvaro Moreno F, Dutt T et al (2017) Current evidence on the discontinuation of eculizumab in patients with atypical haemolytic uraemic syndrome. Clin Kidney J 10:310–319PubMedGoogle Scholar
  32. 32.
    Meinel C, Sparta G, Dahse HM et al (2017) Streptococcus pneumoniae from patients with hemolytic uremic syndrome binds human plasminogen via the surface protein PspC and uses plasmin to damage human endothelial cells. J Infect Dis 217(3):358–370CrossRefGoogle Scholar
  33. 33.
    Melton-Celsa AR, O’brien AD (2014) New therapeutic developments against Shiga toxin-producing Escherichia coli. Microbiol Spectr.  https://doi.org/10.1128/microbiolspec.EHEC-0013-2013 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Menne J, Nitschke M, Stingele R et al (2012) Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104:H4 induced haemolytic uraemic syndrome: Case-control study. BMJ 345:e4565PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Michelfelder S, Fischer F, Waldin A et al (2018) The MFHR1 fusion protein is a novel synthetic multitarget complement inhibitor with therapeutic potential. J Am Soc Nephrol 29:1141–1153PubMedCrossRefGoogle Scholar
  36. 36.
    Michelfelder S, Parsons J, Bohlender LL et al (2017) Moss-produced, glycosylation-optimized human factor H for therapeutic application in complement disorders. J Am Soc Nephrol 28:1462–1474PubMedCrossRefGoogle Scholar
  37. 37.
    Monet-Didailler C, Godron-Dubrasquet A, Madden I et al (2018) Long-term outcome of diarrhea-associated hemolytic uremic syndrome is poorly related to markers of kidney injury at 1‑year follow-up in a population-based cohort. Pediatr Nephrol.  https://doi.org/10.1007/s00467-018-4131-z PubMedCrossRefGoogle Scholar
  38. 38.
    Müller D, Holle J, Iordans I et al (2016) AWMF Leitlinie: Hämolytisch-Urämisches Syndrom im Kindesalter. https://www.awmf.org/uploads/tx_szleitlinien/166-002l_S2k_Haemolytisch-Uraemisches-Syndrom_2016-11_1.pdf Google Scholar
  39. 39.
    Nester CM, Barbour T, De Cordoba SR et al (2015) Atypical aHUS: State of the art. Mol Immunol 67:31–42PubMedCrossRefGoogle Scholar
  40. 40.
    Noris M, Remuzzi G (2009) Atypical hemolytic-uremic syndrome. N Engl J Med 361:1676–1687PubMedCrossRefGoogle Scholar
  41. 41.
    Orth D, Khan AB, Naim A et al (2009) Shiga toxin activates complement and binds factor H: Evidence for an active role of complement in hemolytic uremic syndrome. J Immunol 182:6394–6400PubMedCrossRefGoogle Scholar
  42. 42.
    Pape L, Hartmann H, Bange FC et al (2015) Eculizumab in typical hemolytic uremic syndrome (HUS) with neurological involvement. Medicine (Baltimore) 94:e1000PubMedCrossRefGoogle Scholar
  43. 43.
    Picard C, Burtey S, Bornet C et al (2015) Pathophysiology and treatment of typical and atypical hemolytic uremic syndrome. Pathol Biol (Paris) 63:136–143CrossRefGoogle Scholar
  44. 44.
    Ricklin D, Lambris JD (2016) New milestones ahead in complement-targeted therapy. Semin Immunol 28:208–222PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Riedl M, Fakhouri F, Le Quintrec M et al (2014) Spectrum of complement-mediated thrombotic microangiopathies: Pathogenetic insights identifying novel treatment approaches. Semin Thromb Hemost 40:444–464PubMedCrossRefGoogle Scholar
  46. 46.
    Rosales A, Hofer J, Zimmerhackl LB et al (2012) Need for long-term follow-up in enterohemorrhagic Escherichia coli-associated hemolytic uremic syndrome due to late-emerging sequelae. Clin Infect Dis 54:1413–1421PubMedCrossRefGoogle Scholar
  47. 47.
    Schaefer F, Ardissino G, Ariceta G et al (2018) Clinical and genetic predictors of atypical hemolytic uremic syndrome phenotype and outcome. Kidney Int 94:408–418PubMedCrossRefGoogle Scholar
  48. 48.
    Scully M, Hunt BJ, Benjamin S et al (2012) Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol 158:323–335PubMedCrossRefGoogle Scholar
  49. 49.
    Sharma AP, Greenberg CR, Prasad AN et al (2007) Hemolytic uremic syndrome (HUS) secondary to cobalamin C (cblC) disorder. Pediatr Nephrol 22:2097–2103PubMedCrossRefGoogle Scholar
  50. 50.
    Smith A, Johnston C, Inverarity D et al (2013) Investigating the role of pneumococcal neuraminidase A activity in isolates from pneumococcal haemolytic uraemic syndrome. J Med Microbiol 62:1735–1742PubMedCrossRefGoogle Scholar
  51. 51.
    Szilagyi A, Kiss N, Bereczki C et al (2013) The role of complement in Streptococcus pneumoniae-associated haemolytic uraemic syndrome. Nephrol Dial Transplant 28:2237–2245PubMedCrossRefGoogle Scholar
  52. 52.
    Tarr PI, Gordon CA, Chandler WL (2005) Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365:1073–1086PubMedGoogle Scholar
  53. 53.
    Timmermans S, Abdul-Hamid MA, Potjewijd J et al (2018) C5b9 formation on endothelial cells reflects complement defects among patients with renal thrombotic microangiopathy and severe hypertension. J Am Soc Nephrol 29:2234–2243PubMedCrossRefGoogle Scholar
  54. 54.
    Van Der Maten E, Westra D, Van Selm S et al (2016) Complement factor H serum levels determine resistance to pneumococcal invasive disease. J Infect Dis 213:1820–1827CrossRefGoogle Scholar
  55. 55.
    Vaterodt L, Holle J, Huseman D et al (2018) Short- and long-term renal outcome of hemolytic-uremic syndrome in childhood. Front Pediatr 6:220PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wanchoo R, Bayer RL, Bassil C et al (2018) Emerging concepts in hematopoietic stem cell transplantation-associated renal thrombotic microangiopathy and prospects for new treatments. Am J Kidney Dis 72(6):857–865PubMedCrossRefGoogle Scholar
  57. 57.
    Waters AM, Kerecuk L, Luk D et al (2007) Hemolytic uremic syndrome associated with invasive pneumococcal disease: The United Kingdom experience. J Pediatr 151:140–144PubMedCrossRefGoogle Scholar
  58. 58.
    Westra D, Volokhina EB, Van Der Molen RG et al (2017) Serological and genetic complement alterations in infection-induced and complement-mediated hemolytic uremic syndrome. Pediatr Nephrol 32:297–309PubMedCrossRefGoogle Scholar
  59. 59.
    Wurzner R, Riedl M, Rosales A et al (2014) Treatment of enterohemorrhagic Escherichia coli-induced hemolytic uremic syndrome (eHUS). Semin Thromb Hemost 40:508–516PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Pädiatrie mit Schwerpunkt Gastroenterologie, Nephrologie und StoffwechselmedizinCharité – Universitätsmedizin BerlinBerlinDeutschland
  2. 2.Klinik für Pädiatrie mit Schwerpunkt Pneumologie, Immunologie und IntensivmedizinCharité – Universitätsmedizin BerlinBerlinDeutschland
  3. 3.Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Freiburg, Medizinische FakultätAlbert-Ludwigs-Universität FreiburgFreiburgDeutschland

Personalised recommendations