Mycological Progress

, Volume 18, Issue 12, pp 1383–1393 | Cite as

First new species of Fulvifomes (Hymenochaetales, Basidiomycota) from tropical Africa

  • Boris Armel OlouEmail author
  • Alexander Ordynets
  • Ewald Langer


Fulvifomes is a hymenochaetoid polypore genus currently undergoing re-estimation of its taxonomic and morphological diversity. Numerous new species were described during the last decade but almost exclusively from Neotropics and Eastern Asia. Here, based on morphological and molecular evidence, we describe a new species of Fulvifomes growing on Pseudocedrela kotschyi in Benin. The new species named Fulvifomes yoroui is characterized by perennial, pileate, ungulate basidiomata, and subglobose to globose basidiospores 5.5–6.5 × 4.7–5.6 μm. Analyses of internal transcribed spacer (ITS) and nuclear large subunit rDNA (nLSU) datasets with maximum likelihood and Bayesian phylogenetic inference methods show that F. yoroui represents a distinct lineage within Fulvifomes clade. It is the first time that a new species of Fulvifomes is described based on material from tropical Africa. This finding stimulates further investigations of Fulvifomes in tropical Africa.


Benin Hymenochaetaceae Hymenochaetales Taxonomy Phylogeny New species 



Boris Armel Olou thanks the forester Paul Kiki for the hospitality during the field work.

Author’s contribution

Boris Armel Olou conducted the field work. Boris Armel Olou performed molecular lab works and phylogenetic analyses. Alexander Ordynets calculated the genetic distances. Boris Armel Olou and Ewald Langer performed microscopic investigation of the new species. Boris Armel Olou drafted the description of the new species. The first draft of the manuscript was written by Boris Armel Olou and Alexander Ordynets, and Ewald Langer contributed to later versions of the manuscript. All authors read and approved the final manuscript.

Funding information

Boris Armel Olou thanks the German Academic Exchange Service (DAAD) for a Research Grant “Bi-nationally Supervised Doctoral Degree.”

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11557_2019_1536_MOESM1_ESM.xlsx (24 kb)
ESM 1 (XLSX 23 kb)


  1. Akpona JDT, Assogbadjo AE, Fandouan AB, Kakai RG (2017) Inventory and multicriteria approach to identify priority commercial timber species for conservation in Benin. Bois For Trop 333(3):5–16CrossRefGoogle Scholar
  2. Ayo RG, Audu OT, Ndukwe GI, Ogunshola AM (2010) Antimicrobial activity of extracts of leaves of Pseudocedrela kotschyi (Schweinf.) Harms. Afr. J. Biotechnol. 9(45):7733–7737Google Scholar
  3. Baltazar JM, Gibertoni TB (2010) New combinations in Phellinus s.l. and Inonotus s.l. Mycotaxon 111:205–208CrossRefGoogle Scholar
  4. Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87(1):99–108. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW (2011) GenBank. Nucleic Acids Res 40(D1):D48–D53. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dai YC (1999) Phellinus sensu lato (Aphyllophorales, Hymenochaetaceae) in East Asia. Acta Bot Fenn 166:43–103Google Scholar
  7. Dai YC (2010) Hymenochaetaceae (Basidiomycota) in China. Fungal Divers 45:131–343. CrossRefGoogle Scholar
  8. De Campos-Santana M, Amalfi M, Castillo G, Decock C (2016) Multilocus, DNA-based phylogenetic analyses reveal three new species lineages in the Phellinus gabonensisP. caribaeo-quercicola species complex, including P. amazonicus sp. nov. Mycologia 108(5):939–953. CrossRefPubMedGoogle Scholar
  9. Dörnte B, Kües U (2013) Fast microwave-based DNA extraction from vegetative Mycelium and fruiting body tissues of Agaricomycetes for PCR amplification. Curr Trends Biotechnol Pharm 7:825–836Google Scholar
  10. Fiasson JL, Niemelä T (1984) The Hymenochaetales: a revision of the European poroid taxa. Karstenia 24:14–28CrossRefGoogle Scholar
  11. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118CrossRefGoogle Scholar
  12. Georgewill UO, Georgewill OA (2009) Effect of extract of Pseudocedrela kotschyi on blood glucose concentration of alloxan induced diabetic albino rats. Eastern J Med 14:17–19Google Scholar
  13. Guglielmo F, Bergemann SE, Gonthier P, Nicolotti G, Garbelotto M (2007) A multiplex PCR-based method for the detection and early identification of wood rotting fungi in standing trees. J Appl Microbiol 103(5):1490–1507. CrossRefPubMedGoogle Scholar
  14. Halme P, Kotiaho JS, Ylisirniö A-L, Hottola J, Junninen K, Kouki J, Lindgren M, Mönkkönen M, Penttilä R, Renvall P, Siitonen J, Similä M (2009) Perennial polypores as indicators of annual and red-listed polypores. Ecol Indic 9(2):256–266. CrossRefGoogle Scholar
  15. Hattori T, Sakayaroj J, Jones EBG, Suetrong S, Preedanon S, Klaysuban A (2014) Three species of Fulvifomes (Basidiomycota, Hymenochaetales) associated with rots on mangrove tree Xylocarpus granatum in Thailand. Mycoscience 55:344–354. CrossRefGoogle Scholar
  16. Jayawardena RS, Hyde KD, Jeewon R, Ghobad-Nejhad M, Wanasinghe DN, Liu N et al (2019) One stop shop II: taxonomic update with molecular phylogeny for important phytopathogenic genera: 26–50 (2019). Fungal Divers 94:41–129. CrossRefGoogle Scholar
  17. Ji X-H, Vlasák J, Zhou L-W, Wu F, Dai Y-C (2017b) Phylogeny and diversity of Fomitiporella (Hymenochaetales, Basidiomycota). Mycologia 109(2):308322. CrossRefPubMedGoogle Scholar
  18. Ji X-H, Wu F, Dai YC, Vlasák J (2017a) Two new species of Fulvifomes (Hymenochaetales, Basidiomycota) from America. Mycokeys 22:1–13. CrossRefGoogle Scholar
  19. Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. CrossRefGoogle Scholar
  20. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kotlaba F, Pouzar Z (1978) Notes on Phellinus rimosus complex (Hymenochaetaceae). Acta Bot Croat 37:171–182Google Scholar
  22. Larsen MJ, Cobb-Poulle LA (1990) Phellinus (Hymenochaetaceae). A survey of the world taxa. Fungiflora, Oslo 206 pGoogle Scholar
  23. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30(22):3276–3278. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Larsson K-H, Parmasto E, Fischer M, Langer E, Nakasone KK, Redhead SA (2006) Hymenochaetales: a molecular phylogeny for the hymenochaetoid clade. Mycologia 98:926–936CrossRefGoogle Scholar
  25. Leavitt SD, Fernández-Mendoza F, Pérez-Ortega S, Sohrabi M, Divakar PK, Lumbsch TH, St. Clair LLS (2013) DNA barcode identification of lichen-forming fungal species in the Rhizoplaca melanophthalma species complex (Lecanorales, Lecanoraceae), including five new species. MycoKeys 7:1–22. CrossRefGoogle Scholar
  26. Miller MA, Pfeiffer W, Schwartz T (2010) "Creating the CIPRES Science Gateway for inference of large phylogenetic trees" in Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp 1 – 8.Google Scholar
  27. Murrill MA (1914) Northern Polypores. Published by the Author, New York.
  28. Olou BA, Yorou NS, Striegel M, Bässler C, Krah F-S (2019) Effects of macroclimate and resource on the diversity of tropical wood-inhabiting fungi. For Ecol Manag 436:79–87. CrossRefGoogle Scholar
  29. Ordynets A, Scherf D, Pansegrau F, Denecke J, Lysenko L, Larsson K-H, Langer E (2018) Short-spored Subulicystidium (Trechisporales, Basidiomycota): high morphological diversity and only partly clear species boundaries. MycoKeys 35:41–99. CrossRefGoogle Scholar
  30. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. CrossRefPubMedGoogle Scholar
  31. Raja HA, Miller AN, Pearce CJ, Oberlies NH (2017) Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod 80(3):756–770. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rambaut A (2014) FigTree, a graphical viewer of phylogenetic trees.
  33. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefGoogle Scholar
  34. Rüdigs J (n.d.) Makroaufmaßprogramm.
  35. Ryvarden L (1991) Genera of polypores: nomenclature and taxonomy. Synop Fungorum 5:1–363Google Scholar
  36. Ryvarden L, Johansen I (1980) A preliminary polypore flora of East Africa. Fungifora, Oslo, 636 ppGoogle Scholar
  37. Sakayaroj J, Preedanon S, Suetrong S, Klaysuban A, Jones EBG, Hattori T (2012) Molecular characterization of basidiomycetes associated with the decayed mangrove tree Xylocarpus granatum in Thailand. Fungal Divers 56:145–156. CrossRefGoogle Scholar
  38. Salvador-Montoya CA, Popoff OF, Reck M, Drechsler-Santos ER (2018) Taxonomic delimitation of Fulvifomes robiniae (Hymenochaetales, Basidiomycota) and related species in America: F. squamosus sp. nov. Plant Syst Evol 304(3):445–459. CrossRefGoogle Scholar
  39. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Crous PW (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109(16):6241–6246. CrossRefPubMedGoogle Scholar
  40. Sukumaran J, Holder MT (2010) DendroPy: a Python library for phylogenetic computing. Bioinformatics 26:1569–1571CrossRefGoogle Scholar
  41. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Trifinopoulos J, Nguyen L-T, Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wagner T, Fischer M (2001) Natural groups and a revised system for the European poroid Hymenochaetales (Basidiomycota) supported by nLSU rDNA sequence data. Mycol Res 105(7):773–782. CrossRefGoogle Scholar
  45. Wagner T, Fischer M (2002) Proceedings towards a natural classification of the worldwide taxa Phellinus s.l. and Inonotus s.l., and phylogenetic relationships of allied genera. Mycologia 94:998–1016. CrossRefPubMedGoogle Scholar
  46. Wagner T, Ryvarden L (2002) Phylogeny and taxonomy of the genus Phylloporia (Hymenochaetales). Mycol Prog 94:105–116. CrossRefGoogle Scholar
  47. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols, A guide to Methods and Applications. Academic Press, New York, pp 315–322Google Scholar
  48. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York. CrossRefGoogle Scholar
  49. Wilk J (2012) Smaff “Statistische Messreihen-Auswertung für Fungi v3.1.”. Südwestdeutsche Pilzrundschau 48:49–56 Google Scholar
  50. Wu F, Ren G-J, Wang L, Oliveira-Filho JRC, Gibertoni TB, Dai Y-C (2019) An updated phylogeny and diversity of Phylloporia (Hymenochaetales): eight new species and keys to species of the genus. Mycol Prog 18(5):615–639. CrossRefGoogle Scholar
  51. Zhou LW (2014a) Fulvifomes hainanensis sp. nov. and F. indicus comb. nov. (Hymenochaetales, Basidiomycota) evidenced by a combination of morphology and phylogeny. Mycoscience 55:70–77. CrossRefGoogle Scholar
  52. Zhou LW (2014b) Notes on the taxonomic positions of some Hymenochaetaceae (Basidiomycota) species with colored basidiospores. Phytotaxa 177:183–187. CrossRefGoogle Scholar
  53. Zhou LW (2014c) Fomitiporella caviphila sp. nova (Hymenochaetales, Basidiomycota) from eastern China, with a preliminary discussion on the taxonomy of Fomitiporella. Ann Bot Fenn 51:279–284. CrossRefGoogle Scholar
  54. Zhou LW (2015) Fulvifomes imbricatus and F. thailandicus (Hymenochaetales, Basidiomycota): two new species from Thailand based on morphological and molecular evidence. Mycol Prog 14:89. CrossRefGoogle Scholar
  55. Zhou LW, Dai YC (2012) Phylogeny and taxonomy of Phylloporia (Hymenochaetales): new species and a worldwide key to the genus. Mycologia 104:211–222. CrossRefPubMedGoogle Scholar
  56. Zhou LW, Vlasák J, Qin W-M, Dai Y-C (2016) Global diversity and phylogeny of the Phellinus igniarius complex (Hymenochaetales, Basidiomycota) with the description of five new species. Mycologia 108(1):192–204. CrossRefPubMedGoogle Scholar
  57. Zhou LW, Zhang WM (2012) A new species of Fulvifomes (Hymenochaetaceae) from Cambodia. Mycotaxon 119:175–179. CrossRefGoogle Scholar
  58. Zhu L, Ji X, Si J, Cui B-K (2018) Morphological characters and phylogenetic analysis reveal a new species of Phellinus with hooked hymenial setae from Vietnam. Phytotaxa 356(1):91. CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ecology, FB 10 Mathematics and Natural SciencesUniversity of KasselKasselGermany
  2. 2.Research Unit Tropical Mycology and Plant-Soil Fungi Interactions (MyTIPS)University of ParakouParakouBenin
  3. 3.Laboratory of Applied EcologyUniversity of Abomey-Calavi (LEA/UAC)CotonouBenin

Personalised recommendations