Mycological Progress

, Volume 18, Issue 7, pp 895–905 | Cite as

Pseudosclerococcum golindoi gen. et sp. nov., a new taxon with apothecial ascomata and a Chalara-like anamorph within the Sclerococcales (Eurotiomycetes)

  • Ibai OlariagaEmail author
  • Joxepo Teres
  • Joaquín Martín
  • María Prieto
  • Hans-Otto Baral
Original Article


Sclerococcales encompasses a heterogeneous group of fungi, with most of the species included in the genus Sclerococcum (= Dactylospora). Species of Sclerococcum are characterized by having apothecial ascomata with asci covered by an external hemiamyloid gelatin and a thick euamyloid apical cap, while lacking an inner amyloid wall thickening. Asexual morphs, known for few species, are sporodochial. In this study, we describe Pseudosclerococcum golindoi as a new genus and species sister to Sclerococcum in a multigene phylogeny (nuITS, nuLSU, nuSSU, mtSSU). The fungus produces ascomata similar to those of Sclerococcum, but differs in having cylindrical asci embedded in an overall hemiamyloid gelatin with a fissitunicate dehiscence. Unlike Sclerococcum, Pseudosclerococcum golindoi produces a Chalara-like asexual morph. A possible symbiotic association of P. golindoi with Ascocoryne cylichnium is discussed. The presence of a hemiamyloid gelatin on lateral wall of asci, so far largely overlooked, is reported for some Sclerococcum species. Based on ascal characters and interpretation of the phylogenetic analyses, 14 names assigned to saprotrophic species, previously placed in Dactylospora, are combined in Sclerococcum.


Bitunicate asci Dactylospora Dactylosporaceae Fissitunicate Sclerococcum 



This paper is dedicated to José Luis Albizu Mayoz ‘Golindo’ for his friendship and a life devoted to study fungi in the Basque Country. Bejondaizula! We wish to thank S. Pérez Ortega for lending us relevant literature on Sclerococcum and R. Pino-Bodas for being willing to share unpublished sequences with us.


  1. Baral H-O (2009) Iodine reaction in Ascomycetes: why is Lugol's solution superior to Melzer's reagent?. Accessed 2 Apr 2019
  2. Bellemère A, Hafellner J (1982) L’ultrastructure des asques de genre Dactylospora (Discomycetes) et son interet taxonomique. Cryptogam Mycol 3:71–93Google Scholar
  3. Blanco E, Casado MA, Costa M, Escribano R, García M, Génova M, Gómez A, Gómez F, Moreno JC, Morla C, Regato P, Sainz H (1998) Los bosques ibéricos: una interpretación geobotánica. Editorial Planeta, BarcelonaGoogle Scholar
  4. Cai L, Wu W-P, Hyde KD (2009) Phylogenetic relationships of Chalara and allied species inferred from ribosomal DNA sequences. Mycol Progress 8:133–143Google Scholar
  5. Chen K-H, Miadlikowska J, Arnold AE, U’Ren JM, Gaya E, Gueidan C, Lutzoni F (2015) Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales, and a new order – Phaeomoniellales. Mol Phylogenet Evol 85:117–130CrossRefPubMedGoogle Scholar
  6. Diederich P, Ertz D, Lawrey JD, Sikaroodi M, Untereiner WA (2013) Molecular data place the hyphomycetous lichenicolous genus Sclerococcum close to Dactylospora (Eurotiomycetes) and S. parmeliae in Cladophialophora (Chaetothyriales). Fungal Divers 58:61–72CrossRefGoogle Scholar
  7. Diederich P, Lawrey JD, Ertz D (2018) The 2018 classification and checklist of lichenicolous fungi, with 2000 non-lichenized, obligately lichenicolous taxa. Bryologist 121(3):340–425CrossRefGoogle Scholar
  8. Fernández-Palacios JM, de Nascimento L, Otto R, Delgado JD, García-del-Rey E, Arévalo JR, Whittaker RJ (2011) A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. J Biogeogr 38(2):226–246CrossRefGoogle Scholar
  9. Frahm JP (2012) The phytogeography of European bryophytes. Bot Serbica 36(1):23–36Google Scholar
  10. Gamundí IJ (1981) On Lagerheima Sacc. and Bulgariella Karst. Sydowia 34:82–93Google Scholar
  11. Greif MD, Gibas CF, Tsuneda A, Currah R (2007) Ascoma development and phylogeny of an apothecioid dothideomycete, Catinella olivacea. Am J Bot 94(11):1890–1899CrossRefPubMedGoogle Scholar
  12. Hafellner J (1979) Karschia. Revision einer Sammelgattung an der grenze von lichenisierten und nichtlichenisierten Ascomyceten. Beih Nova Hedwigia 62:1–248Google Scholar
  13. Hawksworth DL (1975) A revision of lichenicolous fungi accepted by Keissler in Coniothecium. Trans Br Mycol Soc 65:219–238CrossRefGoogle Scholar
  14. Hawksworth DL (1979) The lichenicolous hyphomycetes. Bull Br Mus Nat Hist Bot Ser 6:183–300Google Scholar
  15. Hughes SJ, Nag Raj TR (1973) New Zealand Fungi. 20. Fusichalara gen. nov. N Z J Bot 11:661–671CrossRefGoogle Scholar
  16. Ihlen G, Holien H, Tønsberg T (2004) Two new species of Dactylospora (Dactylosporaceae, Lecanorales), with a key to the known species in Scandinavia. Bryologist 107(3):357–362CrossRefGoogle Scholar
  17. Jones EBG, Abdel-WahabMA ASA, Hsieh SY (1999) Dactylospora mangrovei sp. nov. (Discomycetes, ascomycota) from mangrove wood. Mycoscience 40:317–320CrossRefGoogle Scholar
  18. Joshi Y, Knudsen K, Want XY, Hur J-S (2010) Dactylospora glaucomarioides (Ascomycetes, Dactylosporaceae): a Lichenicolous Fungus New to South Korea. Mycobiology 39(4):321–322CrossRefGoogle Scholar
  19. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30:3276–3278CrossRefPubMedPubMedCentralGoogle Scholar
  20. McKenzie EHC, Pinnoi A, Wong MKM, Hyde KD, Jones EBG (2002) Two new hyaline Chalara species, and a key to species described since 1975. Fungal Divers 11:129–139Google Scholar
  21. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE), New Orleans, LA, pp 1–8Google Scholar
  22. Nag Raj TR, Kendrick B (1975) A monograph of Chalara and allied genera. Wilfrid Laurier University Press, WaterlooGoogle Scholar
  23. Pang KL, Guo S-Y, Alias SA, Hafellner J, EBG Johnes (2014) A new species of marine Dactylospora and its phylogenetic affinities within the Eurotiomycetes, Ascomycota. Bot Mar 57:315–321Google Scholar
  24. Pino-Bodas R, Zhurbenko MP, Stenroos S (2017) Phylogenetic placement within Lecanoromycetes of lichenicolous fungi associated with Cladonia and some other genera. Persoonia 39:91–117CrossRefPubMedPubMedCentralGoogle Scholar
  25. Réblová M, Untereiner WA, Štěpánek V, Gams W (2016) [2017] Disentangling Phialophora section Catenulatae: disposition of taxa with pigmented conidiophores and recognition of a new subclass, Sclerococcomycetidae (Eurotiomycetes). Mycol Prog 16:27–46. CrossRefGoogle Scholar
  26. Rehner S, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analyzed from nuclear large subunits ribosomal DNA sequences. Mycol Res 98:625–634CrossRefGoogle Scholar
  27. Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–554CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sarrión FJ, Hafellner J, Burgaz AR (2002) Three new species of the genus Dactylospora in Spain. Lichenologist 34(5):361–368CrossRefGoogle Scholar
  29. Schoch CL, Sung GH, López-Giráldez F et al (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239CrossRefGoogle Scholar
  30. Seaver FJ (1946) Photographs and descriptions of cup-fungi: XLI. Catinella nigro-olivacea. Mycologia 38(4):473–476Google Scholar
  31. Stamatakis A (2014) RAxMLVersion 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefPubMedPubMedCentralGoogle Scholar
  32. Thiers B (2014) (continuously updated): index Herbariorum: a global directory of public herbaria and associated staff, New York Botanical Garden’s Virtual Herbarium. Last accession: 25/01/2018
  33. Vargas-Asensio G, Pinto-Tomas A, Rivera B, Hernandez M, Hernandez C, Soto-Montero S, Murillo C, Sherman DH, Tamayo-Castillo G (2014) Uncovering the cultivable microbial diversity of Costa Rican beetles and its ability to break down plant cell wall components. PLoS One 9(11):e113303CrossRefPubMedPubMedCentralGoogle Scholar
  34. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246CrossRefPubMedPubMedCentralGoogle Scholar
  35. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  36. Wood AR, Damm U, van der Linde EJ, Groenewald JZ, Cheewangkoon R, Crous PW (2016) Finding the missing link: resolving the Coryneliomycetidae within Eurotiomycetes. Persoonia 37:37–56CrossRefPubMedGoogle Scholar
  37. Yu X-D, Dong W, Bhat DJ, Boonmee S, Zhang D, Zhang H (2018) Cylindroconidiis aquaticus gen. et sp. nov., a new lineage of aquatic hyphomycetes in Sclerococcaceae (Eurotiomycetes). Phytotaxa 372(1):079–087CrossRefGoogle Scholar
  38. Zoller S, Scheidegger C, Sperisen C (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen forming ascomycetes. Lichenologist 31:511–516CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology and Geology, Physics and Inorganic ChemistryRey Juan Carlos UniversityMóstolesSpain
  2. 2.Aranzadi Society of Sciences, Mycology sectionDonostia-San SebastiánSpain
  3. 3.TübingenGermany

Personalised recommendations