Mycological Progress

, Volume 17, Issue 11, pp 1269–1282 | Cite as

Phylogenetic, toxigenic and virulence profiles of Alternaria species causing leaf blight of tomato in Egypt

  • Samah Fawzy El Gobashy
  • Wafai Z. A. Mikhail
  • Ahmed Mahmoud IsmailEmail author
  • Adel Zekry
  • Anotonio Moretti
  • Antonella Susca
  • Amira Sh. Soliman
Original Article


Species of Alternaria are serious plant pathogens, causing major losses on a wide range of crops. Leaf blight symptoms were observed on tomato leaves, and samples were collected from various regions. Isolation was done from symptomatic tomato leaves, and 15 representatives were selected from a collection of 65 isolates of Alternaria species. The virulence of Alternaria isolates was investigated on detached leaves (DL) and whole plants of tomato cv. Super strain B. A phylogenetic analysis was performed based on three partial gene regions, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the RNA polymerase second largest subunit (RPB2) and the Alternaria major allergen gene (Alt a 1). The potentiality of Alternaria isolates to produce toxins was also investigated on the basis of thin-layer chromatography (TLC). Our investigations revealed that Alternaria isolates showed different levels of virulence either on tomato plants or DL. Based on the phylogeny of three genes, Alternaria isolates encompassed two species of small-spored morphospecies: A. alternata (14 isolates) and A. arborescens (single isolate). The produced toxins varied among Alternaria isolates with tenuazonic acid (TeA) being the most abundant mycotoxin produced by most isolates. This study highlighted on other Alternaria species in Egypt that might represent a serious concern for tomato producers as causal agents of leaf blight over other species, i.e. A. solani.


Alternaria Leaf blight Mycotoxin Pathogenicity Tomato 



The authors thank Prof. Abdel Mohsen Tohamy for the revision of this manuscript and his useful comments. We also thank Dr. Donato Magistà for his support in the lab in preparing the samples for sequencing. We appreciate all the efforts from all the staff at the Institute of Sciences of Food Production, National Research Council, Bari, Italy.


  1. Akhtar KP, Saleem MY, Asghar M, Haq MA (2004) New report of Alternaria alternata causing leaf blight of tomato in Pakistan. Plant Pathol 53:816. CrossRefGoogle Scholar
  2. Andersen B, Krøger E, Roberts RG (2001) Chemical and morphological segregation of Alternaria alternata, A. gaisen and A. longipes. Mycol Res 105:291–299CrossRefGoogle Scholar
  3. Andrew M, Peever TL, Pryor BM (2009) An expanded multilocus phylogeny does not resolve species among the small-spored Alternaria species complex. Mycologia 101:95–109CrossRefGoogle Scholar
  4. Berbee ML, Pirseyedi M, Hubbard S (1999) Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91:964–977CrossRefGoogle Scholar
  5. Bessadat N, Simoneau P, Benichou S, Setti B, Kihal M, Henni JE (2014) Morphological, physiological and pathogenic variability of small-spore Alternaria causing leaf blight of Solanaceae in Algeria. Afr J Microbiol Res 8:3422–3434CrossRefGoogle Scholar
  6. Betina V (1993) Chromatography of mycotoins techniques and applications. J Chromatogr Libr 54:455Google Scholar
  7. Bottalico A, Logrieco A (1998) Toxigenic Alternaria species of economic importance. In: Sinha KK, Bhatnager D (eds) Mycotoxins in agriculture and food safety. Marcel Dekker, New York, pp 65–108Google Scholar
  8. Caldas ED, Jones AD, Ward B, Winter CK, Gilchrist DG (1994) Structural characterization of three new AAL toxins produced by Alternaria alternata f. sp. lycopersici. J Agric Food Chem 42:327–333CrossRefGoogle Scholar
  9. Cotty PJ, Misaghi IJ (1984) Zinniol production by Alternaria species. Phytopathol 74:785–788CrossRefGoogle Scholar
  10. Crous PW, Verkley GJM, Groenewald JZ, Samson RA (eds) (2009) Fungal biodiversity. CBS laboratory Manual Series 1. CBS-KNAW Fungal Biodiversity Centre, UtrechtGoogle Scholar
  11. Cutler HG, Parker SR, Ross SA, Crumley FG, Schreiner PR (1996) Homobotcinolide: a biologically active natural homolog of botcinolide from Botrytis cinerea. Biosci Biotechnol Biochem 60:656–658CrossRefGoogle Scholar
  12. Devi PS et al (2010) Isolation and characterization of alternariol and alternariol monomethyl ether produced by Alternaria alternata of groundnut. Bioscan 5:323–330Google Scholar
  13. Droby S, Dinoor A, Prusky D, Barkai-Golan R (1984) Pathogenicity of Alternaria alternata on potato in Israel. Plant Dis 74:537–542Google Scholar
  14. Fan ZY, Wang WQ, Meng RJ, Han XY, Zhang XF, Ma ZQ (2013) Identification of the pathogens of potato early blight and their sensitivity to different fungicides. Acta Phytopathol Sin 43:69–74Google Scholar
  15. Fernández-Cruz ML, Mansilla ML, Tadeo JL (2010) Mycotoxins in fruits and their processed products: analysis, occurrence and health implications. J Adv Res 1:113–122CrossRefGoogle Scholar
  16. Foolad MR, Ntahimpera N, Christ BJ, Lin GY (2000) Comparison of field, greenhouse, and detached-leaflet evaluations of tomato germ plasm for early blight resistance. Plant Dis 84:967–972CrossRefGoogle Scholar
  17. Garganese F, Schena L, Siciliano I, Prigigallo MI, Spadaro D, De Grassi A, Ippolito A, Sanzani SM (2016) Characterization of citrus-associate Alternaria species in Mediterranean areas. PLoS One 11:1–18CrossRefGoogle Scholar
  18. Gherbawy Y, Hussein MA, Runge F, Spring O (2018) Molecular characterization of Alternaria alternata population isolated from Upper Egyptian tomato fruits. J Phytopathol 1–13. CrossRefGoogle Scholar
  19. Grogan RG, Kimble KA, Misaghi I (1975) A stem canker disease of tomato caused by Alternaria alternata f. sp. lycopersici. Phytopathol 65:880–886CrossRefGoogle Scholar
  20. Gueidan C, Roux C, Lutzoni F (2007) Using multigene phylogeny analysis to assess generic delineation and character evolution in Verrucariaceae (Verrucariales, Ascomycota). Mycol Res 111:1145–1168CrossRefGoogle Scholar
  21. Harteveld DOC, Akinsanmi OA, Becker MF et al (2014) Comparative fitness of Alternaria species causing fruit spot of apple in Australia. Australas Plant Pathol 43:495–501CrossRefGoogle Scholar
  22. Hawasa UW, El-Desouky S, Abou El-Kassemd L, Elkhateebe W (2015) Alternariol derivatives from Alternaria alternata, an endophytic fungus residing in Red Sea soft coral, inhibit HCV NS3/4A protease1. Appl Biochem Microbiol 51:579–584CrossRefGoogle Scholar
  23. Hong SG, Cramer RA, Lawrence CB et al (2005) Alt a 1 allergen homologs from Alternaria and related taxa: analysis of phylogenetic content and secondary structure. Fungal Genet Biol 42:119–129CrossRefGoogle Scholar
  24. Hu W, Ran Y, Zhuang K et al (2014) Alternaria arborescens infection in a healthy individual and literature review of cutaneous alternariosis. Mycopathologia 179:147–152CrossRefGoogle Scholar
  25. Huang F, Fu Y, Nie D, Stewart JE, Peever TL, Li H (2015) Identification of a novel phylogenetic lineage of Alternaria alternata causing citrus Brown Spot in China. Fungal Biol 119:320–330CrossRefGoogle Scholar
  26. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Biometrics 17:754–755Google Scholar
  27. Ibrahim AIM, Zakaria HM, Agha MKM (2017) First report of leaf blight disease of jojoba (Simmondsia chinensis) caused by Alternaria alternata in Egypt. J Plant Pathol Microbiol 8:e111. CrossRefGoogle Scholar
  28. Kang JC, Crous PW, Mchau GRA et al (2002) Phylogenetic analysis of Alternaria spp. associated with apple core rot and citrus black rot in South Africa. Mycol Res 106:1151–1162CrossRefGoogle Scholar
  29. Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759CrossRefGoogle Scholar
  30. Lau BPY, Scott PM, Lewis DA, Kanhere SR, Cleroux C, Roscoe VA (2003) Liquid chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry of the Alternaria mycotoxins alternariol and alternariol monomethyl ether in fruit juices and beverages. J Chromatogr A 998:119–131CrossRefGoogle Scholar
  31. Lawrence DP, Gannibal PB, Peever TL et al (2013) The sections of Alternaria: formalizing species-groups concepts. Mycologia 105:530–546CrossRefGoogle Scholar
  32. Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 16:1799–1808CrossRefGoogle Scholar
  33. Loggrieco A, Moretti A, Solfrizzo M (2009) Alternaria toxins and plant diseases: an overview of origin, occurrence and risks. World Mycotoxin J 2:129–140CrossRefGoogle Scholar
  34. Logrieco A, Bottalico A, Mulé G, Moretti A, Perrone G (2003) Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur J Plant Pathol 109:645–667CrossRefGoogle Scholar
  35. Lourenco VJR, Moya A, Gonzales-Candelas F, Carbone I, Luiz AM, Mizubuti ESG (2009) Molecular diversity and evolutionary processes of Alternaria solani in Brazil inferred using genealogical and coalescent approaches. Phytopathol 99:765–774CrossRefGoogle Scholar
  36. Maiero M, Bean GA, Nag TJ (1991) Toxin production by Alternaria solani and its related phytotoxicity to tomato breeding lines. Phytopathology 8:1030–1033CrossRefGoogle Scholar
  37. Malathrakis NE (1983) Alternaria stem canker of tomato in Greece. Phytopathol Mediterr 22:33–38Google Scholar
  38. Mason-Gamer R, Kellogg E (1996) Testing for phylogenetic conflict among molecular datasets in the tribe Tiriceae (Graminae). Syst Biol 45:524–545CrossRefGoogle Scholar
  39. Meena M, Swaonil P, Upadhyay RS (2017) Isolation, characterization and toxicological potential of Alternaria-mycotoxins (TeA, AOH and AME) in different Alternaria species from various regions of India. Sci Rep 7:1–19CrossRefGoogle Scholar
  40. Nagrale DT, Gaikwad AP, Sharma L (2013) Morphological and cultural characterization of Alternaria alternata (Fr.) Keissler blight of gerbera (Gerbera jamesonii H. Bolus ex J.D. Hook). J Appl Nat Sci 5:171–178CrossRefGoogle Scholar
  41. Nolte P (2008) Brown spot and black pit of potato: the other early blight. Am Veg Grow 56:32–33Google Scholar
  42. Nylander JAA, (2004). MrModeltest v2.2. Program distributed by the author: 2. Evolutionary Biology Centre, Uppsala University, p 1–2Google Scholar
  43. Ostry V (2008) Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J 1:175–188CrossRefGoogle Scholar
  44. Ozkilinc H, Rotondo F, Pryor BM, Peever TL (2018) Contrasting species boundaries between sections Alternaria and Porri of the genus Alternaria. Plant Pathol 67:303–314CrossRefGoogle Scholar
  45. Ozkilinc H, Sarpkaya K, Kurt S, Can C, Polatbilek H, Yasar A, Sevinc U, Uysal A, Konukoglu F (2017) Pathogenicity, Morpho-species and mating types of Alternaria spp causing Alternaria blight in Pistacia spp in Turkey. Phytoparasitica 45:719–728CrossRefGoogle Scholar
  46. Patel SJ, Subramanian RB, Jha YS (2011) A simple and rapid method for isolation of alternaric acid from Alternaria solani. Curr. Trends. Biotechnol Pharmacol 5:1098–1103Google Scholar
  47. Paterson RRM, Bridge PD (1994) Biochemical techniques for filamentous fungi. IMI Techniques Series no. 1. CABI, WallingfordGoogle Scholar
  48. Patriarca A, Azcarate MP, Terminiello L, Fernández Pinto V (2007) Mycotoxin production by Alternaria strains isolated from Argentinean wheat. Int J Food Microbiol 119:219–222CrossRefGoogle Scholar
  49. Pryor BM, Michailides TJ (2002) Morphological, pathogenic, and molecular characterization of Alternaria isolates associated with Alternaria late blight of pistachio. Phytopatolgy 92:406-416.CrossRefGoogle Scholar
  50. Rands RD (1917) Alternaria on Datura and potato. Phytopathol 5:327–337Google Scholar
  51. Rodrigues TTMS, Berbee ML, Simmons EG, Cardoso CR, Reis A, Maffia LA et al (2010) First report of Alternaria tomatophila and A. grandis causing early blight on tomato and potato in Brazil. New Dis Rep 22:28. CrossRefGoogle Scholar
  52. Rotem J (1994) The genus Alternaria. Biology, epidemiology and pathogenicity. APS Press, St. PaulGoogle Scholar
  53. Rotondo F, Collina M, Brunelli A et al (2012) Comparison of Alternaria spp. collected in Italy from apple with A. mali and other AM-toxian producing strains. Phytopathol 102:1130–1142CrossRefGoogle Scholar
  54. Saharan GS, (1997). Disease resistance. In: Kalia HR, Gupta SK (eds) Recent advances in oilseed Brassicas, Vol 12 Kalyani Publishers, Ludhiana. Pp 233-259Google Scholar
  55. Serdani M, Kang JC, Andersen B et al (2002) Characterisation of Alternaria species-groups associated with core rot of apples in South Africa. Mycol Res 106:561–569CrossRefGoogle Scholar
  56. Shabana YM, Charudattan R, Elwakil MA (1995) First record of Alternaria eichhorniae and Alternaria alternata on Waterhyacinth (Eichhornia crassipes) in Egypt. Plant Dis 79:319CrossRefGoogle Scholar
  57. Sharaf EF (2005) A potent chitinolytic activity of Alternaria alternata isolated from Egyptian black sand. Pol J Microbiol 54:145–151PubMedGoogle Scholar
  58. Shoaib A, Akhtar N, Akhtar S et al (2014) First report of Alternaria longipes causing leaf spot on potato cultivar Sante in Pakistan. Plant Dis 98:1742CrossRefGoogle Scholar
  59. Simmons EG (2000) Alternaria themes and variations (244-286) species on Solanaceae. Mycotaxon 75:1–115Google Scholar
  60. Simmons EG (2007) Alternaria: an identification manual. CBS Fungal Biodiversity Centre, Utrecht CBS Biodiversity Series 6Google Scholar
  61. Sorauer Z (1896) Aufreten einer dem amerikanischen “Early Blight” entsprechenden krankheit an den deutchen kartoffeIn. Xeitschrift fur pflanzenkrankheiten 6:1–9Google Scholar
  62. Stack ME, Prival MJ (1986) Mutagenicity of the Alternaria metabolites altertoxins I, II, and III. Appl Environ Microbiol 52:718–722PubMedPubMedCentralGoogle Scholar
  63. Stewart JE, Timmer L, Lawrence CB, Pryor BM, Peever TL (2014) Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen. BMC Evol Biol 14:38CrossRefGoogle Scholar
  64. Stinson EE, Bills DD, Osman SF, Siciliano J, Ceponis MJ, Heisler EG (1980) Mycotoxins production by Alternaria species grown on apples, tomatoes and blueberries. J Agri Food Chem 28:960–963CrossRefGoogle Scholar
  65. Stoessl A, Unwin CH, Stothers JB (1983) On the biosynthesis of some polyketide metabolites in Alternaria solani: 13C and 1 H NMR studies. Can J Chem 61:372–377CrossRefGoogle Scholar
  66. Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW (2007) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol 44:1204–1223CrossRefGoogle Scholar
  67. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  68. Tymon LS, Cummings TF, Johnson DA (2016) Pathogenicity and aggressiveness of three Alternaria spp. on potato foliage in the U.S Northwest. Plant Dis 100:797–801CrossRefGoogle Scholar
  69. Van der Waals JE, Korsten L, Slippers B (2004) Genetic diversity among Alternaria solani isolates from potatoes in South Africa. Plant Dis 88:959–964CrossRefGoogle Scholar
  70. Woudenberg JHC, Seidl MF, Groenewald E, de Vries M, Stielow B, Thomma BJ et al (2015) Alternaria section Alternaria: species, formae speciales or pathotypes. Stud Mycol 82:1–21CrossRefGoogle Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Samah Fawzy El Gobashy
    • 1
  • Wafai Z. A. Mikhail
    • 2
  • Ahmed Mahmoud Ismail
    • 1
    Email author
  • Adel Zekry
    • 1
  • Anotonio Moretti
    • 3
  • Antonella Susca
    • 3
  • Amira Sh. Soliman
    • 2
  1. 1.Plant Pathology Research InstituteAgricultural Research CentreGizaEgypt
  2. 2.Natural Resources Department, Institute of African Research and StudiesCairo UniversityCairoEgypt
  3. 3.Institute of Sciences of Food ProductionNational Research CouncilBariItaly

Personalised recommendations