Advertisement

DNA analysis reveals rich diversity of Hydnotrya with emphasis on the species found in China

  • Yu-Yan Xu
  • Yan-Wei Wang
  • Ting Li
  • Xiang-Yuan Yan
  • Li Fan
Original Article
  • 16 Downloads

Abstract

Molecular analysis of the truffle genus Hydnotrya was conducted with nrDNA-ITS sequences available including newly generated sequences from Chinese specimens. Twenty-one phylotypes were recognized with the threshold of 97% ITS identity. Seven phylotypes corresponded to the described species, H. bailii, H. cerebriformis, H. cubispora, H. laojunshanensis, H. michaelis, H. cf. variiformis, and H. tulasnei, and four phylotypes represented by Chinese specimens were described and illustrated as new species, i.e., H. badia, H. brunneospora, H. nigricans, and H. puberula. The remaining ten phylotypes may represent undescribed species. Moreover, the 21 phylotypes grouped into four distinct clades each having as core species H. cerebriformis, H. cubispora, H. michaelis, and H. tulasnei, respectively, which were strongly supported by phylogenetic analysis and morphological characterization.

Keywords

Ascomycota Discinaceae Taxonomy Truffle-like Pezizales 

Notes

Acknowledgements

Dr. J.Z. Cao was appreciated for collecting specimens and providing valuable suggestions. The study was supported by the National Natural Science Foundation of China (No. 31270058) and the Beijing Natural Science Foundation (No. 5172003).

References

  1. Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol 20(2):255–266.  https://doi.org/10.1093/molbev/msg028 CrossRefPubMedGoogle Scholar
  2. Bahram M, Põlme S, Kõljalg U, Tedersoo L (2011) A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiol Ecol 75(2):313–320.  https://doi.org/10.1111/j.1574-6941.2010.01000.x CrossRefPubMedGoogle Scholar
  3. Bahram M, Põlme S, Kõljalg U, Zarre S, Tedersoo L (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 193(2):465–473.  https://doi.org/10.1111/j.1469-8137.2011.03927.x CrossRefPubMedGoogle Scholar
  4. Brock PM, Döring H, Bidartondo MI (2009) How to know unknown fungi: the role of a herbarium. New Phytol 181(3):719–724.  https://doi.org/10.1111/j.1469-8137.2008.02703.x CrossRefPubMedGoogle Scholar
  5. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552.  https://doi.org/10.1093/oxfordjournals.molbev.a026334 CrossRefPubMedGoogle Scholar
  6. Cox F, Barsoum N, Lilleskov EA, Bidartondo MI (2010) Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett 13(9):1103–1113.  https://doi.org/10.1111/j.1461-0248.2010.01494.x CrossRefPubMedGoogle Scholar
  7. Dickie IA, Dentinger BTM, Avis PG, McLaughlin DJ, Reich PB (2009) Ectomycorrhizal fungal communities of oak savanna are distinct from forest communities. Mycologia 101(4):473–483.  https://doi.org/10.3852/08-178 CrossRefPubMedGoogle Scholar
  8. Dring DM (1971) Techniques for microscopic preparation. In: Booth C (ed) Methods in microbiology, vol 4. Academic, New York, p 98Google Scholar
  9. Dzhagan V, Alvarado P, Shcherbakova Y (2015) Hydnotrya bailii Soehner (Ascomycota, Pezizales), a new hypogeous fungus for the Ukraine. Nova Hedwigia 100(1):259–263.  https://doi.org/10.1127/0029-5035/2014/0182 CrossRefGoogle Scholar
  10. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118.  https://doi.org/10.1111/j.1365-294X.1993.tb00005.x CrossRefPubMedGoogle Scholar
  11. Gilkey HM (1947) New or otherwise noteworthy species of Tuberales. Mycologia 39(4):441–452.  https://doi.org/10.2307/3755176 CrossRefGoogle Scholar
  12. Gilkey HM (1954) Taxonomic notes on Tuberales. Mycologia 46(6):783–793Google Scholar
  13. Healy RA, Smith ME, Bonito GM, Pfister DH, Ge ZW, Guevara GG, Williams G, Stafford K, Kumar L, Lee T, Hobart C, Trappe J, Vilgalys R, McLaughlin DJ (2013) High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales. Mol Ecol 22(6):1717–1732.  https://doi.org/10.1111/mec.12135 CrossRefPubMedGoogle Scholar
  14. Hesse R (1890) Die Hypogaeen Deutschlands Band II. Verlag L Hoffstetter, HalleGoogle Scholar
  15. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42(2):182–192.  https://doi.org/10.1093/sysbio/42.2.182 CrossRefGoogle Scholar
  16. Hollós L (1911) Magyarország földalatti gombái, szarvasgombaféléi. K. M. Természettudományi Társulat, BudapestGoogle Scholar
  17. Izzo AD, Meyer M, Trappe JM, North M, Bruns TD (2005) Hypogeous ectomycorrhizal fungal species on roots and in small mammal diet in a mixed-conifer forest. For Sci 51(3):243–254Google Scholar
  18. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kellner H, Luis P, Buscot F (2007) Diversity of laccase-like multicopper oxidase genes in Morchellaceae: identification of genes potentially involved in extracellular activities related to plant litter decay. FEMS Microbiol Ecol 61(1):153–163.  https://doi.org/10.1111/j.1574-6941.2007.00322.x CrossRefPubMedGoogle Scholar
  20. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby’s dictionary of the fungi, 10th edn. CAB International, Wallingford, p 325CrossRefGoogle Scholar
  21. Kranabetter JM, Stoehr M, O'Neill GA (2015a) Ectomycorrhizal fungal maladaptation and growth reductions associated with assisted migration of Douglas-fir. New Phytol 206(3):1135–1144.  https://doi.org/10.1111/nph.13287 CrossRefPubMedGoogle Scholar
  22. Konstantinidis G, Kaounas V (2014) Hydnotrya tulasnei and Mattirolomyces terfezioides (Pezizales) two hypogeous fungi that rarely appear in Greece. Ascomycete.Org 6(1):1–4Google Scholar
  23. Lang C, Seven J, Polle A (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza 21(4):297–308.  https://doi.org/10.1007/s00572-010-0338-y CrossRefPubMedGoogle Scholar
  24. Li L, Zhao YC, Zhang XL, Su HY, Li SH, Zhou DQ (2013) Hydnotrya laojunshanensis sp. nov. from China. Mycotaxon 125(1):277–282.  https://doi.org/10.5248/125.277 CrossRefGoogle Scholar
  25. Montecchi A, Sarasini M (2000) Funghi ipogei d'Europa. Associazione Micologica Bresadola, Centro Studi Micologici, VicenzaGoogle Scholar
  26. Moser M (1963) Kleine Kryptogamenflora Band IIa. Ascomyceten (Schlauchpilze). Gustav Fischer Verlag, StuttgartGoogle Scholar
  27. Nylander J (2004) MrModeltest 2.2. Computer software distributed by the Evolutionary Biology Centre, University of Uppsala, UppsalaGoogle Scholar
  28. Ogura-Tsujita Y, Yukawa T (2008) Epipactis helleborine shows strong mycorrhizal preference towards ectomycorrhizal fungi with contrasting geographic distributions in Japan. Mycorrhiza 18(6):331–338.  https://doi.org/10.1007/s00572-008-0187-0 CrossRefPubMedGoogle Scholar
  29. Osmundson TW, Robert VA, Schoch CL, Baker LJ, Smith A, Robich G, Mizzan L, Garbelotto MM (2013) Filling gaps in biodiversity knowledge for macrofungi: contributions and assessment of an herbarium collection DNA barcode sequencing project. PloS one 8(4):e62419.  https://doi.org/10.1371/journal.pone.0062419 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Page RD (2001) TreeView. Glasgow University, GlasgowGoogle Scholar
  31. Pegler DN, Spooner BM. Young TWK (1993) British truffles. A revision of British hypogeous fungi. Royal Botanic Gardens, KewGoogle Scholar
  32. Peintner U, Iotti M, Klotz P, Bonuso E, Zambonelli A (2007) Soil fungal communities in a Castanea sativa (chestnut) forest producing large quantities of Boletus edulis sensu lato (porcini): where is the mycelium of porcini? Environ Microbiol 9(4):880–889.  https://doi.org/10.1111/j.1462-2920.2006.01208.x CrossRefPubMedGoogle Scholar
  33. Pietras M, Rudawska M, Leski T, Karliński L (2013) Diversity of ectomycorrhizal fungus assemblages on nursery grown European beech seedlings. Ann For Sci 70(2):115–121.  https://doi.org/10.1007/s13595-012-0243-y CrossRefGoogle Scholar
  34. Piña-Páez C, Garibay-Orijel R, Guevara-Guerrero G, Castellano MA (2017) Descripción y distribución de Hydnotrya cerebriformis (Discinaceae: Pezizales) en México. Revista Mexicana de Biodiversidad 88(2):269–274.  https://doi.org/10.1016/j.rmb.2017.03.017 CrossRefGoogle Scholar
  35. Reithmeier L, Kernaghan G, de Bello F (2013) Availability of ectomycorrhizal fungi to black spruce above the present treeline in Eastern Labrador. PloS One 8(10):e77527.  https://doi.org/10.1371/journal.pone.0077527 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574.  https://doi.org/10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  37. Soehner E (1959) Tuberaceen studien V. Mitteilungen der Botanischen Staatssammlung München 3:13–33Google Scholar
  38. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690.  https://doi.org/10.1093/bioinformatics/btl446 CrossRefPubMedGoogle Scholar
  39. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313.  https://doi.org/10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21(4):456–463.  https://doi.org/10.1093/bioinformatics/bti191 CrossRefPubMedGoogle Scholar
  41. Stielow B, Bubner B, Hensel G, Münzenberger B, Hoffmann P, Klenk H-P, Göker M (2010) The neglected hypogeous fungus Hydnotrya bailii Soehner (1959) is a widespread sister taxon of Hydnotrya tulasnei (Berk.) Berk. & Broome (1846). Mycol Prog 9(2):195–203.  https://doi.org/10.1007/s11557-009-0625-1 CrossRefGoogle Scholar
  42. Suz LM, Barsoum N, Benham S, Dietrich HP, Fetzer KD, Fischer R, Garcia P, Gehrman J, Kristofel F, Manninger M, Neagu S, Nicolas M, Oldenburger J, Raspe S, Sanchez G, Schrock HW, Schubert A, Verheyen K, Verstraeten A, Bidartondo MI (2014) Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests. Mol Ecol 23(22):5628–5644.  https://doi.org/10.1111/mec.12947 CrossRefPubMedGoogle Scholar
  43. Szemere L (1965) Die Unterirdischen Pilze des Karpatenbeckens. Mycologia 58(6):985–986.  https://doi.org/10.2307/3757080 Google Scholar
  44. Tao K, Liu B (1989) Preliminary study on Hydnotrya from China. Journal of Shanxi University (Nat. Sci Ed) 12(1):81–85Google Scholar
  45. Tedersoo L, Hansen K, Perry BA, Kjøller R (2006) Molecular and morphological diversity of pezizalean ectomycorrhiza. New Phytol 170(3):581–596.  https://doi.org/10.1111/j.1469-8137.2006.01678.x CrossRefPubMedGoogle Scholar
  46. Tĕšitelová T, Tĕšitel J, Jersáková J, RÍhová G, Selosse MA (2012) Symbiotic germination capability of four Epipactis species (Orchidaceae) is broader than expected from adult ecology. Am J Bot 99(6):1020–1032.  https://doi.org/10.3732/ajb.1100503 CrossRefPubMedGoogle Scholar
  47. Trappe JM (1975) Generic synonyms in the Tuberales. Mycotaxon 2:109–122Google Scholar
  48. Trappe JM (1979) The orders, families, and genera of hypogeous Ascomycotina (truffles and their relatives). Mycotaxon 9:297–340Google Scholar
  49. Trappe JM, Claridge AW (2006) Australasian sequestrate fungi 17: the genus Hydoplicata (Ascomycota, Pezizaceae) resurrected. Australasian Mycologist 25:33–36Google Scholar
  50. Vidal JM (1994) Algunos hongos hipogeos interesantes para la micoflora catalana. Revista Catalana de Micologia 16–17:221–248Google Scholar
  51. Vohnik M, Fendrych M, Kolarik M, Gryndler M, Hrrselova H, Albrechtova J, Vosatka M (2007) The ascomycete Meliniomyces variabilis isolated from a sporocarp of Hydnotrya tulasnei (Pezizales) intracellularly colonises roots of ecto-and ericoid mycorrhizal host plants. Czech Mycology 59(2):215–226Google Scholar
  52. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA et al (eds) PCR protocols: a guide to methods and applications 18(1):315–322.  https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  53. Xu AS (2000) Two species of Hydnotrya in Xizang. Mycosystema 19(4):568–569Google Scholar
  54. Zhang BC (1991) Morphology, cytology and taxonomy of Hydnotrya cerebriformis (Pezizales). Mycotaxon 42:155–162Google Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu-Yan Xu
    • 1
  • Yan-Wei Wang
    • 1
  • Ting Li
    • 1
  • Xiang-Yuan Yan
    • 1
  • Li Fan
    • 1
  1. 1.College of Life ScienceCapital Normal UniversityBeijingChina

Personalised recommendations