Advertisement

Mycological Progress

, Volume 17, Issue 9, pp 999–1011 | Cite as

Racocetra crispa (Glomeromycotina) delimited by integrative evidence based on morphology, long continuous nuclear rDNA sequencing and phylogeny

  • Francisco Adriano de Souza
  • Iolanda Ramalho da Silva
  • Maria Beatriz Barbosa de Barros Barreto
  • Fritz Oehl
  • Bruno Tomio Goto
  • Leonor Costa Maia
Original Article
  • 138 Downloads

Abstract

Here, we describe a new ornamented arbuscular mycorrhizal (AM) fungus, Racocetra crispa sp. nov. isolated from maize fields from the central region of Minas Gerais State, Brazil. For the first time, a Glomeromycotina species is described using a long continuous nuclear rDNA sequence fragment, which encompasses the nearly complete 18S SSU sequence gene until the 3′ end of the D2 region of the 28S LSU (~ 3100 bp), which allows for comparison with sequences obtained from regions used for fungal metagenomic studies, species description, and AM fungi DNA-barcode. The new species forms dark brown to black spores, approx. 340–510 μm on in diam., on sporogenous cells. The spores have unique “cloud/flower” projections on the spore surface, two walls, and differentiate a multiple-lobed germ shield with up to 8–12 germ tube initiations. The analysis of the intra- and interspecific DNA-barcode sequence variation within the Racocetra showed that the intragenomic polymorphism among the clones of R. crispa (0–2 %) is within the lower range for the genus. The V3–V4 region of the SSU nrDNA has no resolution to discriminate Racocetra at species level, but from this fragment, we found homology between R. crispa and environmental sequences from two metagenomics studies, one carried out in Brazil at the fungus type location and the other in New Zealand. The integration between AM fungal sequences from reference strains and those obtained from environmental sequences in Glomeromycotina is still a problematic issue, mainly due to the reduced number of AM fungal species characterized based on DNA sequences.

Keywords

Glomeromycetes DNA-barcode Gigasporales Racocetraceae Integrative taxonomy Cerrado rRNA New species 

Notes

Acknowledgements

We would like to thank Marcio Geraldo Martineli from Embrapa Milho e Sorgo for technical assistance with the SEM analysis. We also thank the contribution of two anonymous reviewers for their valuable comments on the manuscript.

Author contributions

F.A.S isolated and carried out the strains cultures and germplasm procedures. B.T.G. and F.O. performed the morphological description. I.R.S. and F.A.S. carried out the molecular and morphometric analysis of the culture and the manuscript preparation for submission. M.B.B.B.B and F.A.S. conducted the phylogenetic analysis. F.A.S. wrote the manuscript. L.C.M provided the overall guidance and performed the final evaluation of the manuscript before submission. All authors commented on the final draft of the manuscript.

Funding information

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) that provided research grants to BT Goto, LC Maia, and to F Oehl as “visiting professor”. Thanks are due to CNPq, Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for providing scholarships to I.R. da Silva. We also thanks Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and CNPq for financial support (Proc. 401912/2013-2; 446144/2014-2; 307129/2015-2).

Supplementary material

11557_2018_1410_MOESM1_ESM.docx (116 kb)
ESM 1 (DOCX 116 kb)
11557_2018_1410_MOESM2_ESM.docx (96 kb)
ESM 2 (DOCX 96 kb)
11557_2018_1410_MOESM3_ESM.docx (632 kb)
ESM 3 (DOCX 632 kb)
11557_2018_1410_MOESM4_ESM.docx (740 kb)
ESM 4 (DOCX 739 kb)
11557_2018_1410_MOESM5_ESM.docx (433 kb)
ESM 5 (DOCX 432 kb)
11557_2018_1410_MOESM6_ESM.xlsx (46 kb)
ESM 6 (XLSX 46 kb)

References

  1. Brundrett MC, Abbott LK (2002) Arbuscular mycorrhizas in plant communities. In: Sivasithamparam K, Dixon KW, Barrett RL (eds) Microorganisms in plant conservation and biodiversity. Kluwer Academic Publishers, The Netherlands, pp 151–193Google Scholar
  2. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552.  https://doi.org/10.1093/oxfordjournals.molbev.a026334 CrossRefPubMedGoogle Scholar
  3. Clapp JP, Helgason T, Daniell TJ et al (2003) Genetic studies of the structure and diversity of arbuscular mycorrhizal fungal communities. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Ecological studies (Analysis and Synthesis), vol 157. Springer, Berlin, pp 201–224CrossRefGoogle Scholar
  4. da Silva IR, de Souza FA, da Silva DKA et al (2017) Patterns of arbuscular mycorrhizal fungal distribution on mainland and island sandy coastal plain ecosystems in Brazil. Microb Ecol 74:654–669.  https://doi.org/10.1007/s00248-017-0979-x CrossRefPubMedGoogle Scholar
  5. Davison J, Öpik M, Daniell TJ et al (2011) Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiol Ecol 78:103–115.  https://doi.org/10.1111/j.1574-6941.2011.01103.x CrossRefPubMedGoogle Scholar
  6. de León DG, Moora M, Öpik M et al (2016) Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol.  https://doi.org/10.1093/femsec/fiw097
  7. de Pontes JS, Sánchez-Castro I, Palenzuela J et al (2013) Scutellospora alterata, a new gigasporalean species from the semi-arid Caatinga biome in Northeastern Brazil. Mycotaxon 125:169–181CrossRefGoogle Scholar
  8. de Souza FA, Kowalchuk GA, Leeflang P et al (2004) PCR-denaturing gradient gel electrophoresis profiling of inter- and intraspecies 18S rRNA gene sequence heterogeneity is an accurate and sensitive method to assess species diversity of arbuscular mycorrhizal fungi of the genus Gigaspora. Appl Environ Microbiol 70:1413–1424.  https://doi.org/10.1128/AEM.70.3.1413
  9. de Souza FA, Declerck S, Smit E, Kowalchuk GA (2005) Morphological, ontogenetic and molecular characterization of Scutellospora reticulata (Glomeromycota). Mycol Res 109:697–706.  https://doi.org/10.1017/S0953756205002546 CrossRefPubMedGoogle Scholar
  10. Douds DD, Schenck NC (1990) Cryopreservation of spores of vesicular–arbuscular mycorrhizal fungi. New Phytol 115:667–647.  https://doi.org/10.1111/j.1469-8137.1990.tb00498.x CrossRefGoogle Scholar
  11. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Embrapa (1997) Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solos. EMBRAPA, Rio de Janeiro, 212p Embrapa (1997) Manual de métodos de análise de solo. In: Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA. p 212Google Scholar
  13. Fournier A, Widmer F, Enkerli J (2010) Development of a single nucleotide polymorphism (SNP) assay for genotyping of Pandora neoaphidis. Fungal Biol 114:498–506.  https://doi.org/10.1016/j.funbio.2010.03.012 CrossRefPubMedGoogle Scholar
  14. Gollotte A, Van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117.  https://doi.org/10.1007/s00572-003-0244-7 CrossRefPubMedGoogle Scholar
  15. Gomes EA, Oliveira CA, Lana UGP et al (2015) Arbuscular mycorrhizal fungal communities in the roots of maize lines contrasting for Al tolerance grown in limed and non-limed Brazilian oxisoil. J Microbiol Biotechnol 25:978–987.  https://doi.org/10.4014/jmb.1408.08002 CrossRefPubMedGoogle Scholar
  16. Goto BT, da Silva GA, Maia LC, Oehl F (2010) Dentiscutata colliculosa, a new species in the Glomeromycetes from northeastern Brazil with colliculate spore ornamentation. Nova Hedwigia 90:383–393.  https://doi.org/10.1127/0029-5035/2010/0090-0383 CrossRefGoogle Scholar
  17. Goto BT, da Silva GA, Maia LC et al (2011) Racocetra tropicana, a new species in the Glomeromycetes from tropical areas. Nova Hedwigia 92:69–82.  https://doi.org/10.1127/0029-5035/2011/0092-0069 CrossRefGoogle Scholar
  18. Goto BT, Silva GA, de Assis DM et al (2012) Intraornatosporaceae (Gigasporales), a new family with two new genera and two new species. Mycotaxon 119:117–132.  https://doi.org/10.5248/119.117 CrossRefGoogle Scholar
  19. Gouy M, Guindon S, Gascuel O (2010) Sea view version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224.  https://doi.org/10.1093/molbev/msp259 CrossRefPubMedGoogle Scholar
  20. Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321.  https://doi.org/10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  21. Hall N (2007) Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol 210:1518–1525.  https://doi.org/10.1242/jeb.001370 CrossRefPubMedGoogle Scholar
  22. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580.  https://doi.org/10.1016/S0022-2836(83)80284-8
  23. Helgason T, Daniell TJ, Husband R et al (1998) Ploughing up the wood-wide web? Nature 394:431.  https://doi.org/10.1038/28764 CrossRefPubMedGoogle Scholar
  24. Huelsenbeck JP, Larget B, Alfaro ME (2004) Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol Biol Evol 21:1123–1133.  https://doi.org/10.1093/molbev/msh123 CrossRefPubMedGoogle Scholar
  25. Johansen RB, Vestberg M, Burns BR et al (2015) A coastal sand dune in New Zealand reveals high arbuscular mycorrhizal fungal diversity. Symbiosis 66:111–121.  https://doi.org/10.1007/s13199-015-0355-x CrossRefGoogle Scholar
  26. Koske RE, Walker C (1985) Species of Gigaspora (Endogonaceae) with roughened outer walls. Mycologia 77:702–720CrossRefGoogle Scholar
  27. Krüger C, Walker C, Schüßler A (2014) Scutellospora savannicola: redescription, epitypification, DNA barcoding and transfer to Dentiscutata.  https://doi.org/10.1007/s11557-014-1005-z
  28. Krüger M, Stockinger H, Krüger C, Schüssler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223.  https://doi.org/10.1111/j.1469-8137.2009.02835.x CrossRefPubMedGoogle Scholar
  29. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  30. Lefort V, Longueville J-E, Gascuel O (2017) SMS: smart model selection in PhyML. Mol Biol Evol 34:2422–2424.  https://doi.org/10.1093/molbev/msx149 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lin K, Limpens E, Zhang Z et al (2014) Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLoS Genet.  https://doi.org/10.1371/journal.pgen.1004078
  32. Lin T-C, Yen C-H (2011) Racocetra undulata, a new species in the Glomeromycetes from Taiwan. Mycotaxon 116:401–406.  https://doi.org/10.5248/116.401 CrossRefGoogle Scholar
  33. Marinho F, Da Silva GA, Ferreira ACA et al (2014) Bulbospora minima, a new genus and a new species in the Glomeromycetes from semi-arid Northeast Brazil. Sydowia 66:313–323.  https://doi.org/10.12905/0380.sydowia66(2)2014-0313 CrossRefGoogle Scholar
  34. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gatew Computing Environments Workshop 2010 (GCE), pp 1–8Google Scholar
  35. Moora M, Davison J, Öpik M et al (2014) Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol 90:609–621.  https://doi.org/10.1111/1574-6941.12420 CrossRefPubMedGoogle Scholar
  36. Nicolson T, Schenck N (1979) Endogonaceous mycorrhizal endophytes in Florida. Mycologia 71:178–198CrossRefGoogle Scholar
  37. Oehl F, de Souza FA, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 106:311–360.  https://doi.org/10.1016/j.knee.2011.05.002 CrossRefGoogle Scholar
  38. Oehl F, Sieverding E, Palenzuela J et al (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199.  https://doi.org/10.5598/imafungus.2011.02.02.10 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Öpik M, Moora M, Liira J et al (2003) Divergent of mycorrhizal fungal Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol 160:581–593.  https://doi.org/10.1046/j.1469-8137x.2003.00917.x CrossRefGoogle Scholar
  40. Öpik M, Vanatoa A, Vanatoa E et al (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241.  https://doi.org/10.1111/j.1469-8137.2010.03334.x CrossRefPubMedGoogle Scholar
  41. Öpik M, Davison J, Moora M, Zobel M (2014) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92:135–147.  https://doi.org/10.1139/cjb-2013-0110 CrossRefGoogle Scholar
  42. Öpik M, Davison J (2016) Uniting species- and community-oriented approaches to understand arbuscular mycorrhizal fungal diversity. Fungal Ecol 24:106–113.  https://doi.org/10.1016/j.funeco.2016.07.005 CrossRefGoogle Scholar
  43. Primmer CR, Borge T, Lindell J, Sætre G-P (2002) Single-nucleotide polymorphism characterization in species with limited available sequence information: high nucleotide diversity revealed in the avian genome. Mol Ecol 11:603–612.  https://doi.org/10.1046/j.0962-1083.2001.01452.x CrossRefPubMedGoogle Scholar
  44. Rambaut A (2009) FigTree Version 1.3.1. Available at http://tree.bio.ed.ac.uk/software/figtree/. Assessed 02 June 2017
  45. Rodríguez-Echeverría S, Teixeira H, Correia M et al (2017) Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytol 213:380–390.  https://doi.org/10.1111/nph.14122 CrossRefPubMedGoogle Scholar
  46. Ronquist F, Teslenko M, Van Der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542.  https://doi.org/10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ryberg M (2015) Molecular operational taxonomic units as approximations of species in the light of evolutionary models and empirical data from Fungi. Mol Ecol 24:5770–5777.  https://doi.org/10.1111/mec.13444 CrossRefPubMedGoogle Scholar
  48. Saks Ü, Davison J, Öpik M et al (2014) Root-colonizing and soil-borne communities of arbuscular mycorrhizal fungi in a temperate forest understorey. Botany 92:277–285.  https://doi.org/10.1139/cjb-2013-0058 CrossRefGoogle Scholar
  49. Sanders IR, Alt M, Groppe K et al (1995) Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol 130:419–427.  https://doi.org/10.1111/j.1469-8137.1995.tb01836.x CrossRefGoogle Scholar
  50. Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:1–6.  https://doi.org/10.1073/pnas.1117018109 CrossRefGoogle Scholar
  51. Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft für Technische Zusammenarbeit 224. Hartmut Bremer Verlag, FriedlandGoogle Scholar
  52. da Silva GA, Maia LC, Oehl F (2012) Phylogenetic systematics of the Gigasporales. Mycotaxon 122:207–220.  https://doi.org/10.5248/122.207 CrossRefGoogle Scholar
  53. Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular- arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295PubMedPubMedCentralGoogle Scholar
  54. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. 3rd edn. Academic Press, New YorkGoogle Scholar
  55. Spatafora JW, Chang Y, Benny GL et al (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046.  https://doi.org/10.3852/16-042 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Stockinger H, Krüger M, Schüssler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474CrossRefPubMedGoogle Scholar
  57. Tchabi A, Hountondji F, Laouwin L (2009) Racocetra beninensis from sub-Saharan savannas: a new species in the Glomeromycetes with ornamented spores. Mycotaxon 110:199–209CrossRefGoogle Scholar
  58. Thiéry O, Vasar M, Jairus T et al (2016) Sequence variation in nuclear ribosomal small subunit, internal transcribed spacer and large subunit regions of Rhizophagus irregularis and Gigaspora margarita is high and isolate-dependent. Mol Ecol 25:2816–2832.  https://doi.org/10.1111/mec.13655 CrossRefPubMedGoogle Scholar
  59. Tisserant E, Kohler A, Dozolme-Seddas P et al (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769.  https://doi.org/10.1111/j.1469-8137.2011.03948.x CrossRefPubMedGoogle Scholar
  60. van der Heijden MGA, Klironomos JN, Ursic M et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72.  https://doi.org/10.1038/23932 CrossRefGoogle Scholar
  61. Varela-Cervero S, Vasar M, Davison J et al (2015) The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species. Environ Microbiol 17:2882–2895.  https://doi.org/10.1111/1462-2920.12810 CrossRefPubMedGoogle Scholar
  62. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR - protocols and applications - a laboratory manual. Academic Press, pp 315–322Google Scholar

Copyright information

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Embrapa Milho e SorgoSete LagoasBrazil
  2. 2.Departamento de Micologia, Centro de BiociênciasUniversidade Federal de PernambucoRecifeBrazil
  3. 3.Departamento de Botânica, Centro de Ciência da Saúde, Instituto de BiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Agroscope, Competence Division for Plants and Plant Products, EcotoxicologyWädenswilSwitzerland
  5. 5.Departamento de Botânica e Zoologia, CBUniversidade Federal do Rio Grande do NorteNatalBrazil

Personalised recommendations