Advertisement

Pruned improved eight-point approximate DCT for image encoding in visual sensor networks requiring only ten additions

  • Chaouki AraarEmail author
  • Salim Ghanemi
  • Mohamed Benmohammed
  • Hamza Atoui
Original Research Paper
  • 16 Downloads

Abstract

A low-complexity pruned eight-point discrete cosine transform (DCT) approximation for image compression in visual sensor networks is introduced. The proposed transform consists of using an approximate DCT in combination with pruning approach. The aim of the former is to reduce the computational complexity by not computing the DCT exactly, while the latter aims at computing only the more important low-frequency coefficients. An algorithm for the fast computation of the proposed transform is developed. Only ten additions are required for both forward and backward transformations. The proposed pruned DCT transform exhibits extremely low computational complexity while maintaining competitive image compression performance in comparison with the state-of-the-art methods. An efficient parallel-pipelined hardware architecture for the proposed pruned DCT is also designed. The resulting design is implemented on Xilinx Virtex-6 XC6VSX475T-2ff1156 FPGA technology and evaluated for hardware resource utilization, power consumption, and real-time performance. All the metrics we investigated showed clear advantages of the proposed pruned approximate transform over the state-of-the-art competitors.

Keywords

VSNs Image compression Pruning approach FPGA Low power consumption 

Notes

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11554_2019_918_MOESM1_ESM.xlsx (50 kb)
Supplementary material 1 (XLSX 49 kb)

References

  1. 1.
    Akyildiz, I.F., Weilian, S., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002).  https://doi.org/10.1109/MCOM.2002.1024422 CrossRefGoogle Scholar
  2. 2.
    Rahimi, M., Baer, R., Iroezi, O.I., Garcia, J.C., Warrior, J., Estrin, D., Srivastava, M.: Cyclops: in situ image sensing and interpretation in wireless sensor networks. In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems (SenSys’05), USA, pp. 192–204 (2005).  https://doi.org/10.1145/1098918.1098939
  3. 3.
    Soro, S., Heinzelman, W.: A survey of visual sensor networks. Adv. Multimed. 2009, 1–19 (2009).  https://doi.org/10.1155/2009/640386 CrossRefGoogle Scholar
  4. 4.
    Akyildiz, I.F., Melodia, T., Chowdhury, K.R.: A survey on wireless multimedia sensor networks. Comput. Netw. 51(4), 921–960 (2007).  https://doi.org/10.1016/j.comnet.2006.10.002 CrossRefGoogle Scholar
  5. 5.
    Mammeri, A., Hadjou, B., Khoumsi, A.: A survey of image compression algorithms for visual sensor networks. ISRN Sens. Netw. 2012, 1–19 (2012).  https://doi.org/10.5402/2012/760320 CrossRefGoogle Scholar
  6. 6.
    Lee, D., Kim, H., Rahimi, M., Estrin, D.: Energy-efficient image compression for resource constrained platforms. IEEE Trans. Image Process. 18(9), 2100–2113 (2009).  https://doi.org/10.1109/TIP.2009.2022438 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Mammeri, A., Khoumsi, A., Ziou, D., Hadjou, B.: Energy-aware JPEG for visual sensor networks. In: Maghrebian Conference on Information Technologies (MCSEAI’08), Oran, Algeria (2008)Google Scholar
  8. 8.
    Taylor, C.N., Panigrahi, D., Dey, S.: Design of an adaptive architecture for energy efficient wireless image communication. Lect. Notes Comput. Sci. 2268, 260–273 (2002).  https://doi.org/10.1007/3-540-45874-3_15 CrossRefzbMATHGoogle Scholar
  9. 9.
    Cintra, R.J., Bayer, F.M.: A DCT approximation for image compression. IEEE Signal Process. Lett. 18(10), 579–582 (2011).  https://doi.org/10.1109/LSP.2011.2163394 CrossRefGoogle Scholar
  10. 10.
    Bayer, F.M., Cintra, R.J.: DCT-like transform for image compression requires 14 additions only. Electron. Lett. 48(15), 919–921 (2012).  https://doi.org/10.1049/el.2012.1148 CrossRefGoogle Scholar
  11. 11.
    Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: Binary discrete cosine and hartley transforms. IEEE Trans. Circuits Syst. 60(4), 989–1002 (2013).  https://doi.org/10.1109/TCSI.2012.2224751 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Potluri, U.S., Madanayake, A., Cintra, R.J., Bayer, F.M., Kulasekera, S., Edirisuriya, A.: Improved 8-point approximate DCT for image and video compression requiring only 14 additions. IEEE Trans. Circuits Syst. 61(6), 1727–1740 (2014).  https://doi.org/10.1109/TCSI.2013.2295022 CrossRefGoogle Scholar
  13. 13.
    Tablada, C.J., da Silveira, T.L.T., Cintra, R.J., Bayer, F.M.: DCT approximations based on Chen’s factorization. Signal Process. Image Commun. 58, 14–23 (2017).  https://doi.org/10.1016/j.image.2017.06.014 CrossRefGoogle Scholar
  14. 14.
    Oliveira, R.S., Cintra, R.J., Bayer, F.M., da Silveira, T.L.T., Madanayake, A., Leite, A.: Low-complexity 8-point DCT approximation based on angle similarity for image and video coding. Multidimens. Syst. Signal Process. (2018).  https://doi.org/10.1007/s11045-018-0601-5 CrossRefzbMATHGoogle Scholar
  15. 15.
    Jridi, M., Meher, P.K.: Scalable approximate DCT architectures for efficient HEVC-compliant video coding. IEEE Trans. Circuits Syst. Video 27(8), 1815–1825 (2017).  https://doi.org/10.1109/TCSVT.2016.2556578 CrossRefGoogle Scholar
  16. 16.
    Makkaoui, L., Lecuire, V., Moureaux, J.-M.: Fast zonal DCT-based image compression for wireless camera sensor networks. In: Proceedings of the IEEE International Conference on Image Processing Theory, Tools and Applications (IPTA’10), Paris, France, pp. 126–129 (2010)Google Scholar
  17. 17.
    Lecuire, V., Makkaoui, L., Moureaux, J.-M.: Fast zonal DCT for energy conservation in wireless image sensor networks. Electron. Lett. 48, 125–127 (2012).  https://doi.org/10.1049/el.2011.2392 CrossRefGoogle Scholar
  18. 18.
    Kouadria, N., Doghmane, N., Messadeg, D., Harize, S.: Low complexity DCT for image compression in wireless visual sensor networks. Electron. Lett. 49(24), 1531–1532 (2013).  https://doi.org/10.1049/el.2013.2781 CrossRefGoogle Scholar
  19. 19.
    Mechouek, K., Kouadria, N., Doghmane, N., Kaddeche, N.: Low complexity DCT approximation for image compression in wireless image sensor networks. J. Circuits Syst. Comput. 25(8), 1650088 (2016).  https://doi.org/10.1142/S0218126616500882 CrossRefGoogle Scholar
  20. 20.
    Araar, C., Ghanemi, S., Benmohammed M., Bourennane, E.: Low complexity image compression using pruned 8-point DCT approximation in wireless visual sensor networks. In: 2017 International Conference on Mathematics and Information Technology (ICMIT), Adrar, Algeria, pp. 279–285 (2017).  https://doi.org/10.1109/mathit.2017.8259730
  21. 21.
    Coutinho, V.A., Cintra, R.J., Bayer, F.M., Kulasekera, S., Madanayake, A.: A multiplierless pruned DCT-like transformation for image and video compression that requires ten additions only. J. Real-Time Image Process. 12(2), 247–255 (2015).  https://doi.org/10.1007/s11554-015-0492-8 CrossRefGoogle Scholar
  22. 22.
    Britanak, V., Yip, P., Rao, K.R.: Discrete cosine and sine transforms. Academic Press, San Diego (2007)Google Scholar
  23. 23.
    Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: Low-complexity 8 × 8 transform for image compression. Electron. Lett. 44, 1249–1250 (2008).  https://doi.org/10.1049/el:20082239 CrossRefGoogle Scholar
  24. 24.
    The USC-SIPI image database. University of Southern California, Signal and Image Processing Institute. http://sipi.usc.edu/database/. Accessed 2018
  25. 25.
    Rao, K.R., Yip, P.C.: The Transform and Data Compression Handbook. CRC Press LLC, Boca Raton (2001)zbMATHGoogle Scholar
  26. 26.
    Blahut, R.E.: Fast Algorithms for Signal Processing. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  27. 27.
    Loeffler, C., Ligtenberg, A., Moschytz, G.S.: Practical fast 1-D DCT algorithms with 11 multiplications. In: International Conference on Acoustics, Speech, and Signal Processing, Glasgow, UK, pp. 988–991 (1989).  https://doi.org/10.1109/icassp.1989.266596
  28. 28.
    Hosny, K.M.: Fast computation of accurate zernike moments. J. Real-Time Image Process. 3(1), 97–107 (2008).  https://doi.org/10.1007/s11554-007-0058-5 MathSciNetCrossRefGoogle Scholar
  29. 29.
    ISO/IEC 10918-1/ITU-T Recommendation T.81, Digital compression and coding of continuous-tone still images. http://www.jpeg.org/jpeg/. Accessed 2018
  30. 30.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004).  https://doi.org/10.1109/TIP.2003.819861 CrossRefGoogle Scholar
  31. 31.
    Phamila, A.V.Y., Amutha, R.: Energy-efficient low bit rate image compression in wavelet domain for wireless image sensor networks. Electron. Lett. 51(11), 824–826 (2015).  https://doi.org/10.1049/el.2015.0411 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chaouki Araar
    • 1
    Email author
  • Salim Ghanemi
    • 1
  • Mohamed Benmohammed
    • 2
  • Hamza Atoui
    • 3
  1. 1.Computer Science DepartmentBadji Mokhtar-Annaba UniversitySidi AmarAlgeria
  2. 2.Department of Software Technologies and Information SystemsUniversity of Constantine 2-Abdelhamid MehriConstantineAlgeria
  3. 3.Electronics DepartmentBadji Mokhtar-Annaba UniversitySidi AmarAlgeria

Personalised recommendations