Advertisement

Journal of Real-Time Image Processing

, Volume 16, Issue 3, pp 685–695 | Cite as

Improved reversible data hiding based on PVO and adaptive pairwise embedding

  • Haorui Wu
  • Xiaolong Li
  • Yao ZhaoEmail author
  • Rongrong Ni
Special Issue paper
  • 138 Downloads

Abstract

Pixel-value-ordering (PVO) is an efficient technique of reversible data hiding (RDH). By PVO, the cover image is first divided into non-overlapping blocks with equal size. Then, the pixel values in each block are sorted in ascending order. Next, take the second largest/samllest pixel value as a prediction of the largest/samllest pixel value to derive two prediction errors. Finally, the data embedding is constructed by modifying the generated prediction errors of each block. After data embedding, the PVO of each block is unchanged, which guarantees the reversibility. Our key observation is that, in each block, the modification for the two prediction errors is independent without exploiting the correlation between them, although they are closely correlated with each other. In light of this, an improved PVO-based RDH method is proposed in this work. The two prediction errors of each block are considered as a pair, and the pairs are modified for data embedding based on adaptive two-dimensional histogram modification. The proposed method is experimentally verified better than the original PVO-based method and some of its improvements.

Keywords

Reversible data hiding Pixel-value-ordering Two-dimensional histogram Pairwise embedding Adaptive embedding 

Notes

Acknowledgements

This work was supported by the National Key Research and Development of China (No. 2016YFB0800404), the National Science Foundation of China (Nos. 61572052, U1736213 and 61532005), and the Fundamental Research Funds for the Central Universities (No. 2018JBZ001).

References

  1. 1.
    Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography. Morgan Kaufmann, San Mateo (2007)Google Scholar
  2. 2.
    Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge Univ. Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Zhang, X., Wang, S.: Efficient steganographic embedding by exploiting modification direction. IEEE Commun. Lett. 10(11), 781–783 (2006)CrossRefGoogle Scholar
  4. 4.
    Zhang, X., Wang, S., Qian, Z., Feng, G.: Reference sharing mechanism for watermark self-embedding. IEEE Trans. Image Process. 20(2), 485–495 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Qin, C., Chang, C.C., Chiu, Y.P.: A novel joint data-hiding and compression scheme based on SMVQ and image inpainting. IEEE Trans. Image Process. 23(3), 969–978 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Qin, C., Zhang, X.: Effective reversible data hiding in encrypted image with privacy protection for image content. J. Vis. Commun. Image R. 31, 154–164 (2015)CrossRefGoogle Scholar
  7. 7.
    Hong, R., Li, L., Cai, J., Tao, D., Wang, M., Tian, Q.: Coherent semantic-visual indexing for large-scale image retrieval in the cloud. IEEE Trans. Image Process. 26(9), 4128–4138 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ma, Y., Luo, X., Li, X., Bao, Z., Zhang, Y.: Selection of rich model steganalysis features based on decision rough set \(\alpha\)-positive region reduction. IEEE Trans. Circuits Syst. Video Technol. 29(12), 336–350 (2019)CrossRefGoogle Scholar
  9. 9.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 13(8), 890–896 (2003)CrossRefGoogle Scholar
  10. 10.
    Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 16(3), 354–362 (2006)CrossRefGoogle Scholar
  11. 11.
    Thodi, D.M., Rodriguez, J.J.: Expansion embedding techniques for reversible watermarking. IEEE Trans. Image Process. 16(3), 721–730 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hong, W., Chen, T.S., Shiu, C.W.: Reversible data hiding for high quality images using modification of prediction errors. J. Syst. Softw. 82(11), 1833–1842 (2009)CrossRefGoogle Scholar
  13. 13.
    Sachnev, V., Kim, H.J., Nam, J., Suresh, S., Shi, Y.Q.: Reversible watermarking algorithm using sorting and prediction. IEEE Trans. Circuits Syst. Video Technol. 19(7), 989–999 (2009)CrossRefGoogle Scholar
  14. 14.
    Coatrieux, G., Le Guillou, C., Cauvin, J.M., Roux, C.: Reversible watermarking for knowledge digest embedding and reliability control in medical images. IEEE Trans. Inf. Technol. Biomed. 13(2), 158–165 (2009)CrossRefGoogle Scholar
  15. 15.
    Li, X., Yang, B., Zeng, T.: Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans. Image Process. 20(12), 3524–3533 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Coltuc, D.: Improved embedding for prediction-based reversible watermarking. IEEE Trans. Inf. Forens. Secur. 6(3), 873–882 (2011)CrossRefGoogle Scholar
  17. 17.
    Hong, W.: Adaptive reversible data hiding method based on error energy control and histogram shifting. Opt. Commun. 285(2), 101–108 (2011)CrossRefGoogle Scholar
  18. 18.
    Ou, B., Li, X., Zhao, Y., Ni, R., Shi, Y.Q.: Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans. Image Process. 22(12), 5010–5021 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Li, X., Zhang, W., Gui, X., Yang, B.: A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans. Inf. Forens. Secur. 8(7), 1091–1100 (2013)CrossRefGoogle Scholar
  20. 20.
    Qin, C., Chang, C.C., Huang, Y.H., Liao, L.T.: An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Trans. Circuits Syst. Video Technol. 23(7), 1109–1118 (2013)CrossRefGoogle Scholar
  21. 21.
    Li, X., Li, B., Yang, B., Zeng, T.: General framework to histogram-shifting-based reversible data hiding. IEEE Trans. Image Process. 22(6), 2181–2191 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Xuan, G., Tong, X., Teng, J., Zhang, X., Shi, Y.Q.: Optimal histogram-pair and prediction-error based image reversible data hiding. In: Shi, Y.Q., Kim, H.J., Pérez-González, F. (eds.) The International Workshop on Digital Forensics and Watermarking 2012. IWDW 2012. Lecture Notes in Computer Science, vol. 7809. Springer, Berlin, Heidelberg (2013)Google Scholar
  23. 23.
    Dragoi, I.C., Coltuc, D.: Local-prediction-based difference expansion reversible watermarking. IEEE Trans. Image Process. 23(4), 1779–1790 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Qian, Z., Zhang, X., Wang, S.: Reversible data hiding in encrypted JPEG bitstream. IEEE Trans. Multimedia 16(5), 1486–1491 (2014)CrossRefGoogle Scholar
  25. 25.
    Li, X., Zhang, W., Gui, X., Yang, B.: Efficient reversible data hiding based on multiple histograms modification. IEEE Trans. Inf. Forens. Secur. 10(9), 2016–2027 (2015)CrossRefGoogle Scholar
  26. 26.
    Pan, Z., Hu, S., Ma, X., Wang, L.: Reversible data hiding based on local histogram shifting with multilayer embedding. J. Vis. Commun. Image Represent. 31, 64–74 (2015)CrossRefGoogle Scholar
  27. 27.
    Dragoi, I.C., Coltuc, D.: On local prediction based reversible watermarking. IEEE Trans. Image Process. 24(4), 1244–1246 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Dragoi, I.C., Coltuc, D.: Adaptive pairing reversible watermarking. IEEE Trans. Image Process. 25(5), 2420–2422 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Shi, Y.Q., Li, X., Zhang, X., Wu, H.T., Ma, B.: Reversible data hiding: advances in the past two decades. IEEE Access. 4, 3210–3237 (2016)CrossRefGoogle Scholar
  30. 30.
    Wang, J., Ni, J., Zhang, X., Shi, Y.Q.: Rate and distortion optimization for reversible data hiding using multiple histogram shifting. IEEE Trans. Cybern. 47(2), 315–326 (2017)Google Scholar
  31. 31.
    Kim, D.S., Yoon, E.J., Kim, C., Yoo, K.Y.: Reversible data hiding scheme with edge-direction predictor and modulo operation. J. Real Time Image Process. 14(1), 137–145 (2018)CrossRefGoogle Scholar
  32. 32.
    Jung, K.H.: High-capacity reversible data hiding method using block expansion in digital images. J. Real Time Image Process. 14(1), 159–170 (2018)CrossRefGoogle Scholar
  33. 33.
    Ou, B., Li, X., Zhang, W., Zhao, Y.: Improving pairwise PEE via hybrid-dimensional histogram generation and adaptive mapping selection. IEEE Trans. Circuits Syst. Video Technol. (2018).  https://doi.org/10.1109/TCSVT.2018.2859792 CrossRefGoogle Scholar
  34. 34.
    Li, X., Li, J., Li, B., Yang, B.: High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process. 93(1), 198–205 (2013)CrossRefGoogle Scholar
  35. 35.
    Peng, F., Li, X., Yang, B.: Improved PVO-based reversible data hiding. Digit. Signal Process. 25(2), 255–265 (2014)CrossRefGoogle Scholar
  36. 36.
    Ou, B., Li, X., Zhao, Y., Ni, R.: Reversible data hiding using invariant pixel-value-ordering and prediction-error expansion. Signal Process. Image Commun. 29(7), 760–772 (2014)CrossRefGoogle Scholar
  37. 37.
    Qu, X., Kim, H.J.: Pixel-based pixel value ordering predictor for high-fidelity reversible data hiding. Signal Process. 111, 249–260 (2015)CrossRefGoogle Scholar
  38. 38.
    Wang, X., Ding, J., Pei, Q.: A novel reversible image data hiding scheme based on pixel value ordering and dynamic pixel block partition. Inform. Sci. 310, 16–35 (2015)CrossRefGoogle Scholar
  39. 39.
    Ou, B., Li, X., Wang, J.: High-fidelity reversible data hiding based on pixel-value-ordering and pairwise prediction-error expansion. J. Vis. Commun. Image Represent. 39, 12–23 (2016)CrossRefGoogle Scholar
  40. 40.
    He, W., Xiong, G., Weng, S., Cai, Z., Wang, Y.: Reversible data hiding using multi-pass pixel-value-ordering and pairwise prediction-error expansion. Inform. Sci. 467, 784–799 (2018)CrossRefGoogle Scholar
  41. 41.
    Dragoi, I.C., Caciula I., Coltuc D.: Improved pairwise pixel-value-ordering for high-fidelity reversible data hiding. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 1668–1672 (2018)Google Scholar
  42. 42.
    Li, X., Guo, Z.: General expansion-shifting model for reversible data hiding. In: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp. 1–4 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Haorui Wu
    • 1
    • 2
  • Xiaolong Li
    • 1
    • 2
  • Yao Zhao
    • 1
    • 2
    Email author
  • Rongrong Ni
    • 1
    • 2
  1. 1.Institute of Information ScienceBeijing Jiaotong UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Advanced Information Science and Network TechnologyBeijingChina

Personalised recommendations