Advertisement

A fast coding method for distortion-free data hiding in high dynamic range image

  • Yue Guo
  • Weiming ZhangEmail author
  • Dongdong Hou
  • Yuanzhi Yao
  • Shuangkui Ge
Special Issue Paper
  • 11 Downloads

Abstract

Reversible data hiding (RDH) technique allows the original cover to be lossless restored after the secret message is extracted, and high dynamic range (HDR) images are becoming more and more popular. We found that the existing RDH schemes for HDR image will cause serious stream expansion, which means that the storage size of the cover HDR image will expand. Noticing that we proposed a fast coding method named reverse-Golomb code for message embedding in all-zero cover to reduce the number of the alteration of pixel’s status, and thus reduce the stream expansion of cover HDR images. The experimental results show the superiority of our method.

Keywords

Reversible data hiding High dynamic range image Stream expansion Arithmetic coder 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61572452, U1636201, and U1536104.

References

  1. 1.
    Khan, A., Siddiqa, A., Munib, S., Malik, S.A.: A recent survey of reversible watermarking techniques. Inf. Sci. 279, 251–272 (2014)CrossRefGoogle Scholar
  2. 2.
    Fridrich, J., Goljan, M., Du, R.: Lossless data embedding for all image formats. In: Proceedings of EI SPIE, Security and Watermarking of Multimedia Contents IV, vol. 4675, San Jose, pp. 572–583 (2002)Google Scholar
  3. 3.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 13(8), 890–896 (2003)CrossRefGoogle Scholar
  4. 4.
    Ni, Z., Shi, Y.Q., Ansari, N., Wei, S.: Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 16(3), 354–362 (2006)CrossRefGoogle Scholar
  5. 5.
    Tsai, P., Hu, Y.C., Yeh, H.L.: Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process. 89, 1129–1143 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Sachnev, V., Kim, H.J., Nam, J., Suresh, S., Shi, Y.: Reversible watermarking algorithm using sorting and prediction. IEEE Trans. Circuits Syst. Video Technol. 19(7), 989–999 (2009)CrossRefGoogle Scholar
  7. 7.
    Yang, C.H., Tsai, M.H.: Improving histogram-based reversible data hiding by interleaving predictions. IET Image Process. 4(4), 223–234 (2010)CrossRefGoogle Scholar
  8. 8.
    Li, X., Yang, B., Zeng, T.: Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans. Image Process. 20(12), 3524–3533 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wang, S.Y., Li, C.Y., Kuo, W.C.: Reversible data hiding based on two-dimensional prediction errors. IET Image Process. 7(9), 805–816 (2013)CrossRefGoogle Scholar
  10. 10.
    Wang, J., Ni, J., Zhang, X., Shi, Y.: Rate and distortion optimization for reversible data hiding using multiple histogram shifting. IEEE Trans. Cybern. 47(2), 315–326 (2017)Google Scholar
  11. 11.
    Qin, C., Chang, C.C., Huang, Y.H., et al.: An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Trans. Circuits Syst. Video Technol. 23(7), 1109–1118 (2013)CrossRefGoogle Scholar
  12. 12.
    Qin, C., Chang, C.C., Chiu, Y.P.: A novel joint data-hiding and compression scheme based on SMVQ and image inpainting. IEEE Trans. Image Process. 23(3), 969–978 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chang, C., Lin, C., Fan, Y.: Lossless data hiding for color images based on block truncation coding. Pattern Recognit. 41(7), 2347–2357 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Asikuzzaman, M., Alam, M.J., Lambert, A.J., Pickering, M.R.: A blind and robust video watermarking scheme using chrominance embedding. In: International conference on digital image computing: techniques and applications, pp. 1–6 (2014)Google Scholar
  15. 15.
    Ou, B., Li, X., Zhao, Y., Ni, R.: Efficient color image reversible data hiding based on channel-dependent payload partition and adaptive embedding. Signal Process. 108, 642–657 (2015)CrossRefGoogle Scholar
  16. 16.
    Li, J., Li, X., Yang, B.: Reversible data hiding scheme for color image based on prediction-error expansion and cross-channel correlation. Signal Process. 93(9), 2748–2758 (2013)CrossRefGoogle Scholar
  17. 17.
    Hou, D., Zhang, W., Chen, K., Lin, S., Yu, N.: Reversible data hiding in color image with grayscale invariance. In: IEEE Transactions on Circuits and Systems for Video Technology (2018)Google Scholar
  18. 18.
    Cheng, Y.M., Wang, C.M.: A novel approach to steganography in high-dynamic range images. IEEE MultiMedia 16(3), 70–80 (2009)CrossRefGoogle Scholar
  19. 19.
    Yu, C.M., Wu, K.C., Wang, C.M.: A distortion-free data hiding scheme for high dynamic range images. Displays 32(1), 225–236 (2011)CrossRefGoogle Scholar
  20. 20.
    Ward, G.: Real pixel, Graphic Gem II, Chapter 15. pp. 80–83 (1991)Google Scholar
  21. 21.
    Wang, Z.H., Lin, T.Y., Chang, C.C, Lin, C.C.: A novel distortion-free data hiding scheme for high dynamic range images. In: 2012 Fourth International Conference on Digital Home (ICDH). IEEE (2012)Google Scholar
  22. 22.
    Chang, C.C., Nguyen, T.S., Lin, C.C.: Distortion-free data embedding scheme for high dynamic range images. J. Electron. Sci. Technol. 11(1), 20–26 (2013)Google Scholar
  23. 23.
    Chang, C.C., Nguyen, T.S., Lin, C.C.: A new distortion-free data embedding scheme for high-dynamic range images. Multimedia Tools Appl. 75(1), 145–163 (2016)CrossRefGoogle Scholar
  24. 24.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yue Guo
    • 1
  • Weiming Zhang
    • 1
    Email author
  • Dongdong Hou
    • 1
  • Yuanzhi Yao
    • 1
  • Shuangkui Ge
    • 2
  1. 1.School of Information Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Beijing Institute of Electronic Technology ApplicationBeijingChina

Personalised recommendations