Journal of Real-Time Image Processing

, Volume 16, Issue 3, pp 661–671 | Cite as

Real-time reversible data hiding based on multiple histogram modification

  • Tong Zhang
  • Xiaolong LiEmail author
  • Wenfa Qi
  • Wei Li
  • Zongming Guo
Special Issue Paper


Prediction-error expansion (PEE) has been widely utilized in reversible data hiding (RDH) due to its advantage of high-quality marked image. Recently, a RDH method based on multiple histogram modification (MHM) has been proposed, achieving good performance at low capacity. However, its exhaustive expansion-bin-selection mechanism is time consuming, so that it can only choose a single pair of expansion bins in each histogram for embedding data. As an extension of MHM, a novel RDH scheme for high-capacity embedding is proposed in this paper. In the proposed method, multiple pairs of expansion bins are utilized in each histogram and a greedy search algorithm is designed to determine the nearly optimal expansion bins. The results of experiments demonstrate that the proposed scheme has real-time performance and high-quality marked image, and it outperforms the original MHM-based RDH method and some other state-of-the-art works.


Reversible data hiding Prediction-error expansion Real-time embedding Greedy algorithm 



This work was supported by the National Science Foundation of China (nos. 61572052, U1736213, and U1636206).


  1. 1.
    Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography. Morgan Kaufmann, San Francisco (2007)Google Scholar
  2. 2.
    Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Li, B., He, J., Huang, J., Shi, Y.Q.: A survey on image steganography and steganalysis. J. Inf. Hiding Multimed. Signal Process. 2(2), 142–172 (2011)Google Scholar
  4. 4.
    Ma, Y., Luo, X., Li, X., Bao, Z., Zhang, Y.: Selection of rich model steganalysis features based on decision rough set \(\alpha\)-positive region reduction. IEEE Trans. Circuits Syst. Video Technol. (2018).
  5. 5.
    Shi, Y.Q., Li, X., Zhang, X., Wu, H.T., Ma, B.: Reversible data hiding: advances in the past two decades. IEEE Access 4, 3210–3237 (2016)CrossRefGoogle Scholar
  6. 6.
    Coatrieux, G., Le Guillou, C., Cauvin, J.M., Roux, C.: Reversible watermarking for knowledge digest embedding and reliability control in medical images. IEEE Trans. Inf. Technol. Biomed. 13(2), 158–165 (2009)CrossRefGoogle Scholar
  7. 7.
    Li, X., Li, B., Yang, B., Zeng, T.: General framework to histogram-shifting-based reversible data hiding. IEEE Trans. Image Process. 22(6), 2181–2191 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Li, X., Li, J., Li, B., Yang, B.: High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process. 93(1), 198–205 (2013)CrossRefGoogle Scholar
  9. 9.
    Qian, Z., Zhang, X., Wang, S.: Reversible data hiding in encrypted JPEG bitstream. IEEE Trans. Multimed. 16(5), 1486–1491 (2014)CrossRefGoogle Scholar
  10. 10.
    Qu, X., Kim, H.J.: Pixel-based pixel value ordering predictor for high-fidelity reversible data hiding. Signal Process. 111, 249–260 (2015)CrossRefGoogle Scholar
  11. 11.
    Wu, H.T., Dugelay, J.L., Shi, Y.Q.: Reversible image data hiding with contrast enhancement. IEEE Signal Process. Lett. 22(1), 81–85 (2015)CrossRefGoogle Scholar
  12. 12.
    Qiu, Y., Qian, Z., Yu, L.: Adaptive reversible data hiding by extending the generalized integer transformation. IEEE Signal Process. Lett. 23(1), 130–134 (2016)CrossRefGoogle Scholar
  13. 13.
    Jung, K.: High-capacity reversible data hiding method using block expansion in digital images. J. Real Time Image Process. 14(1), 159–170 (2018)CrossRefGoogle Scholar
  14. 14.
    Hou, D., Zhang, W., Yang, Y., Yu, N.: Reversible data hiding under inconsistent distortion metrics. IEEE Trans. Image Process. 27(10), 5087–5099 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kim, D., Yoon, E., Kim, C., Yoo, K.: Reversible data hiding scheme with edge-direction predictor and modulo operation. J. Real Time Image Process. 14(1), 137–145 (2018)CrossRefGoogle Scholar
  16. 16.
    Qin, C., Zhang, W., Cao, F., Zhang, X., Chang, C.C.: Separable reversible data hiding in encrypted images via adaptive embedding strategy with block selection. Signal Process. 153, 109–122 (2018)CrossRefGoogle Scholar
  17. 17.
    Ou, B., Li, X., Zhang, W., Zhao, Y.: Improving pairwise PEE via hybrid-dimensional histogram generation and adaptive mapping selection. IEEE Trans. Circuits Syst. Video Technol. (2018).
  18. 18.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 13(8), 890–896 (2003)CrossRefGoogle Scholar
  19. 19.
    Alattar, A.M.: Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans. Image Process. 13(8), 1147–1156 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Thodi, D.M., Rodríguez, J.J.: Expansion embedding techniques for reversible watermarking. IEEE Trans. Image Process. 16(3), 721–730 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kim, H., Sachnev, V., Shi, Y., Nam, J., Choo, H.: A novel difference expansion transform for reversible data embedding. IEEE Trans. Inf. Forensics Secur. 3(3), 456–465 (2008)CrossRefGoogle Scholar
  22. 22.
    Hu, Y., Lee, H.K., Li, J.: DE-based reversible data hiding with improved overflow location map. IEEE Trans. Circuits Syst. Video Technol. 19(2), 250–260 (2009)CrossRefGoogle Scholar
  23. 23.
    Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 16(3), 354–362 (2006)CrossRefGoogle Scholar
  24. 24.
    Hong, W., Chen, T.S., Shiu, C.W.: Reversible data hiding for high quality images using modification of prediction errors. J. Syst. Softw. 82(11), 1833–1842 (2009)CrossRefGoogle Scholar
  25. 25.
    Sachnev, V., Kim, H.J., Nam, J., Suresh, S., Shi, Y.Q.: Reversible watermarking algorithm using sorting and prediction. IEEE Trans. Circuits Syst. Video Technol. 19(7), 989–999 (2009)CrossRefGoogle Scholar
  26. 26.
    Hwang, H.J., Kim, H.J., Sachnev, V., Joo, S.H.: Reversible watermarking method using optimal histogram pair shifting based on prediction and sorting. KSII Trans. Internet Inf. Syst. 4(4), 655–670 (2010)Google Scholar
  27. 27.
    Li, X., Yang, B., Zeng, T.: Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans. Image Process. 20(12), 3524–3533 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Coatrieux, G., Pan, W., Cuppens-Boulahia, N., Cuppens, F., Roux, C.: Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Trans. Inf. Forensics Secur. 8(1), 111–120 (2013)CrossRefGoogle Scholar
  29. 29.
    Li, X., Zhang, W., Gui, X., Yang, B.: A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans. Inf. Forensics Secur. 8(7), 1091–1100 (2013)CrossRefGoogle Scholar
  30. 30.
    Ou, B., Li, X., Zhao, Y., Ni, R., Shi, Y.Q.: Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans. Image Process. 22(12), 5010–5021 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Qin, C., Chang, C.C., Huang, Y.H., Liao, L.T.: An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Trans. Circuits Syst. Video Technol. 23(7), 1109–1118 (2013)CrossRefGoogle Scholar
  32. 32.
    Xuan, G., Tong, X., Teng, J., Zhang, X., Shi, Y.Q.: Optimal histogram-pair and prediction-error based image reversible data hiding. In: The International Workshop on Digital Forensics and Watermarking 2012. pp. 368–383. Springer (2013)Google Scholar
  33. 33.
    Dragoi, I.C., Coltuc, D.: Local-prediction-based difference expansion reversible watermarking. IEEE Trans. Image Process. 23(4), 1779–1790 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Hu, X., Zhang, W., Li, X., Yu, N.: Minimum rate prediction and optimized histograms modification for reversible data hiding. IEEE Trans. Inf. Forensics Secur. 10(3), 653–664 (2015)CrossRefGoogle Scholar
  35. 35.
    Li, X., Zhang, W., Gui, X., Yang, B.: Efficient reversible data hiding based on multiple histograms modification. IEEE Trans. Inf. Forensics Secur. 10(9), 2016–2027 (2015)CrossRefGoogle Scholar
  36. 36.
    Dragoi, I.C., Coltuc, D.: On local prediction based reversible watermarking. IEEE Trans. Image Process. 24(4), 1244–1246 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Wang, X., Ding, J., Pei, Q.: A novel reversible image data hiding scheme based on pixel value ordering and dynamic pixel block partition. Inf. Sci. 310, 16–35 (2015)CrossRefGoogle Scholar
  38. 38.
    Dragoi, I.C., Coltuc, D.: Adaptive pairing reversible watermarking. IEEE Trans. Image Process. 25(5), 2420–2422 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wang, J., Ni, J., Zhang, X., Shi, Y.Q.: Rate and distortion optimization for reversible data hiding using multiple histogram shifting. IEEE Trans. Cybern. 47(2), 315–326 (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tong Zhang
    • 1
  • Xiaolong Li
    • 2
    • 3
    Email author
  • Wenfa Qi
    • 1
  • Wei Li
    • 4
  • Zongming Guo
    • 1
  1. 1.Institute of Computer Science and TechnologyPeking UniversityBeijingChina
  2. 2.Institute of Information ScienceBeijing Jiaotong UniversityBeijingChina
  3. 3.Beijing Key Laboratory of Advanced Information Science and Network TechnologyBeijingChina
  4. 4.School of Mathematical SciencesCapital Normal UniversityBeijingChina

Personalised recommendations