Advertisement

Journal of Real-Time Image Processing

, Volume 16, Issue 1, pp 127–141 | Cite as

Prospects for live higher resolution video streaming to mobile devices: achievable quality across wireless links

  • A. O. Adeyemi-Ejeye
  • M. Alreshoodi
  • L. Al-Jobouri
  • M. FleuryEmail author
Special Issue Paper
  • 82 Downloads

Abstract

From a review of the literature and a range of experiments, this paper demonstrates that live video streaming to mobile devices with pixel resolutions from Standard Definition up to 4K Ultra High Definition (UHD) is now becoming feasible by means of high-throughput IEEE 802.11ad at 60 GHz or 802.11ac at 5 GHz, and 4K UHD streaming is even possible with 802.11n operating at 5 GHz. The paper, by a customized implementation, also shows that real-time compression, assisted by graphical processing units at 4K UHD, is also becoming feasible. The paper further considers the impact of packet loss on H.264/AVC and HEVC codec compressed video streams in terms of structural similarity index video quality. It additionally gives an indication of wireless network latencies and currently feasible frame rates. Findings suggest that, for medium-range transmission, the video quality may be acceptable at low packet loss rates. For hardware-accelerated 4K UHD encoding, standard frame rates may be possible but appropriate higher frame rates are only just being reached in hardware implementations. The target bitrate was found to be important in determining the display quality, which depends on the coding complexity of the video content. Higher compressed bitrates are recommended, as video quality may improve disproportionately as a result.

Keywords

4K UHD Emerging wireless technology Video streaming Real-time compression 

References

  1. 1.
    Abe, A., Walker, S.D.: Multi-hop 802.11ad wireless H.264 video streaming. In: IEEE Int. Conf. on Telecomms. and Sig. Proc., pp. 94–99. IEEE, Vienna, Austria (2016).  https://doi.org/10.1109/TSP.2016.7760836 Google Scholar
  2. 2.
    Adeyemi-Ejeye, A.O., Walker, S.D.: Uncompressed quad-1080p wireless video streaming. In: IEEE 4th Comput. Sci. and Electron. Eng. Conf., pp. 13–16. IEEE, Colchester, UK (2012).  https://doi.org/10.1109/CEEC.2012.6375371 Google Scholar
  3. 3.
    Adeyemi-Ejeye, A.O., Walker, S.D.: Ultra-high definition wireless video transmission using H. 264 over 802.11n WLAN: Challenges and performance evaluation. In: 12th Int. Conf. on Telecommuns., pp. 109–114. IEEE, Zagreb, Croatia (2013)Google Scholar
  4. 4.
    Adeyemi-Ejeye, A.O., Alreshoodi, M., Al-Jobouri, L., Fleury, M., Woods, J.: Packet loss visibility across SD, HD, 3D, and UHD video streams. J. Video Commun. Image Represent. 45, 95–106 (2017)CrossRefGoogle Scholar
  5. 5.
    Adeyemi-Ejeye, A.O., Alreshoodi, M., Walker, S.D.: Implementation of 4kUHD HEVC-content transmission. Multimed. Tools Appl. 76(17), 18099–18118 (2017)CrossRefGoogle Scholar
  6. 6.
    Alreshoodi, M., Adeyemi-Ejeye, A.O., Al-Jobouri, L., Fleury, M., Al-Zahrani, B.: Packet loss visibility for higher resolution video on portable devices. In: IEEE Int. Conf. Consumer Electron., pp. 237–238. IEEE, Las Vega, NV, USA (2017).  https://doi.org/10.1109/ICCE.2017.7889298 Google Scholar
  7. 7.
    Bae, S.H., Kim, J., Kim, M., Cho, S.: Assessments of subjective video quality on HEVC-encoded 4K-UHD video for beyond-HDTV broadcasting services. IEEE Trans. Broadcast. 59(2), 209–222 (2013)CrossRefGoogle Scholar
  8. 8.
    Baykas, T., et al.: IEEE 802.15.3c: The first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun. Mag. 49(7), 114–121 (2011)CrossRefGoogle Scholar
  9. 9.
    Bejarano, O., Knightly, E.W.: IEEE 802.11ac: From channelization to multi-user MIMO. IEEE Commun. Mag. 51(10), 84–90 (2013)CrossRefGoogle Scholar
  10. 10.
    Bing, B.: 3D and HD Broadband Video Networking. Artech House, Boston (2007)Google Scholar
  11. 11.
    Bjøntegaard, G.: Calculation of average PSNR differences between RD-curves. VCEG Meeting, ITU-T SG16 Q.6, Austin, Texas, USA (2001)Google Scholar
  12. 12.
    Borer, T., Cotton, A.: A “Display Independent” High Dynamic Range television system. BBC Research & Develop. White Paper, WHP 309 (2015)Google Scholar
  13. 13.
    Bossen, F., Bross, B., Sühring, K., Flynn, D.: HEVC complexity and implementation analysis. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1685–1696 (2012)CrossRefGoogle Scholar
  14. 14.
    Bossen, F.: Common HM Test Conditions and Software Reference Configurations. JVT-VC, Document JVTVC-LI1100, Geneva, Switzerland meeting (2013)Google Scholar
  15. 15.
    Chen, W.-N., Hang, H.-M.: H.264/AVC motion estimation implementation on Compute Unified Device Architecture (CUDA). In: IEEE Int. Conf. Multimed. and Expo., pp. 697–700. IEEE, Hannover, Germany (2008).  https://doi.org/10.1109/ICME.2008.4607350 Google Scholar
  16. 16.
    Cheng, L., Liu, C., Dong, Z., Yu, J., Chang, G.-K.: 60-GHz and 100-GHz wireless transmission of High-Definition video services in converged Radio-over-Fiber systems. In: Conf. on Lasers and Electro-Optics, pp. 1–2. IEEE, San Jose, CA, USA (2013)Google Scholar
  17. 17.
    Choi, M., Lee, G., Jin, S., Koo, J., Kim, B., Choi, S.: Link adaptation for high-quality uncompressed video streaming in 60-GHz wireless networks. IEEE Trans. Multimed. 18(4), 627–642 (2016)CrossRefGoogle Scholar
  18. 18.
    Cordeiro, C.: Evaluation of medium access technologies for next generation millimeter-wave WLAN and WPAN. In: IEEE Int. Conf. Commun. Workshops, pp. 1–5. IEEE, Dresden, Germany (2009).  https://doi.org/10.1109/ICCW.2009.5208112 Google Scholar
  19. 19.
    Da Silva, T.L., Agostini, L.V., da Silva Cruz, D.A.: Fast HEVC intra prediction mode decision based on edge direction information. In: 20th Europ. Sig. Process. Conf, pp. 1214–1218. IEEE, Bucharest, Romania (2012)Google Scholar
  20. 20.
    De Simone, F., Naccari, M., Tagliasacchi, M., Dufaux, F., Tubaro, S., Ebrahimi, T.: Subjective assessment of H.264/AVC video sequences transmitted over a noisy channel. In: Int. Workshop on Quality of Multimed. Experience, pp. 204–209. IEEE, San Diego, CA, USA (2009).  https://doi.org/10.1109/QOMEX.2009.5246952 Google Scholar
  21. 21.
    Dianu, M.-D., Riihijärvi, J., Petrova, M.: Measurement-based study of the performance of IEEE 802.11ac in an indoor environment. In: IEEE Int.Conf. Commun., pp. 5771–5776. IEEE, Sydney, NSW, Australia (2014).  https://doi.org/10.1109/ICC.2014.6884242 Google Scholar
  22. 22.
    Dobrian, F., Sekar, V., Awan, A., Stoica, I., Joseph, D., Ganjam, A., Zhan, J., Zhang, H.: Understanding the impact of video quality on user engagement. In: ACM SIGCOMM, pp. 362–373. ACM, Toronto, Ontario, Canada (2011)Google Scholar
  23. 23.
    DVB: DVB Broadcast Asia 2014 exhibition & conference preview Singapore (2014). http://epublishbyus.com/ebook/ebook?id=10036869#/2
  24. 24.
    Elemental Technologies: 4K Test sequences (2013). Portland, OR, USA. http://www.elementaltechnologies.com/resources/4k-test-sequences
  25. 25.
    Emoto, M., Sugawara, M.: Critical fusion frequency for bright and wide field-of-view image display. J. Disp. Technol. 8(7), 424–429 (2012)CrossRefGoogle Scholar
  26. 26.
    Evans, J., Filsfils, C.: Deploying IP and MPLS QoS for Multiservice Networks. Morgan Kaufmann, San Francisco (2007)Google Scholar
  27. 27.
    Fleury, M.: Streaming uncompressed HD over wireless channels. In: Int. Broadcasting Conf. Amsterdam, Holland (2012)Google Scholar
  28. 28.
    François, E., van de Kerkhof, L.: A single-layer HDR video coding framework with SDR compatibility. In: Int. Broadcast. Conf. SMPTE, Amsterdam, Holland (2016)Google Scholar
  29. 29.
    Ghanbari, M., Crawford, D., Fleury, M., Khan, E., Woods, J.: Future performance of video codecs. Research Report for Office of Commun (Ofcom), London (2006)Google Scholar
  30. 30.
    Grois, D., Marpe, D., Nguyen, T., Hadar, O.: Comparative assessment of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC encoders for low-delay video applications. In: SPIE Proc., vol. 9217, Applications of Digital Image Processing XXXVII, San Diego, CA, USA (2014).  https://doi.org/10.1117/12.2073323
  31. 31.
    Grois, D., Nguyen, T., Marpe, D.: Coding efficiency comparison of AVI/VP9, H.265/MPEG-HEVC, and H.264/MPEG-AVC encoders. In: Picture Coding Symp., Nuremburg, Germany (2016)Google Scholar
  32. 32.
    Halák, J., Krsek, M., Ubik, S., Žejdl, P., Nevřela, F.: Real-time long distance transfer of uncompressed 4K video for remote collaboration. Futur. Gen. Comput. Syst. 27(7), 886–892 (2011)CrossRefGoogle Scholar
  33. 33.
    Hamidouche, W., Cocherel, G., Le Feuvre, J., Raulet, M., Déforges, O.: 4k real time video streaming with SHVC decoder and GPAC player. In: IEEE Int. Conf. on Multimed. and Expo Workshops. IEEE, Chengdu, China (2014).  https://doi.org/10.1109/ICMEW.2014.6890613 Google Scholar
  34. 34.
    Hanhart, P., Rerabek, M., De Simone, F., Ebrahimi, T.: Subjective quality evaluation of the upcoming HEVC video compression standard. EPFL Tech, Paper, Lausanne, Switzerland (2012)Google Scholar
  35. 35.
    Harris, M.: Optimizing parallel reduction in CUDA. In: Proc. ACM SIGMOD, vol. 21. pp. 104–110 (2007)Google Scholar
  36. 36.
    Heng, T.K., Asano, W., Itoh, T., Tanizawa, A., Yamaguchi, J., Matsuo, T., Kodama, T.: A highly parallelized H.265/HEVC real-time UHD software encoder. In: IEEE Int. Conf. on Image Process., pp. 1213–1217. IEEE, Paris, France (2014).  https://doi.org/10.1109/ICIP.2014.7025242 Google Scholar
  37. 37.
    Hoßfeld, T., Egger, S., Schatz, R., Fiedler, M., Masuch, K., Lorentzen, C.: Initial delay vs. interruptions: between the devil and the deep blue sea. In: 4th Int. Workshop QoMEX, pp. 1–6. Yarra Valley, VIC, Australia (2012).  https://doi.org/10.1109/QoMEX.2012.6263849
  38. 38.
    Horé, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: IEEE 20th Int. Conf. on Pattern Recognit., pp. 2366–2369. IEEE, Istanbul, Turkey (2010).  https://doi.org/10.1109/ICPR.2010.579 Google Scholar
  39. 39.
    Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with FESTIVE. IEEE/ACM Trans. Netw. 22(1), 326–340 (2014)CrossRefGoogle Scholar
  40. 40.
    Jin, G., Lee, H.-J.: A parallel and pipelined execution of H.264/AVC intra prediction. In: IEEE Int. Conf. on Comput. and Info. Technol. IEEE, Seoul, South Korea (2006)Google Scholar
  41. 41.
    Kamata, H., Kikuchi, H., Sykes, P.J.: Real-world live 4K Ultra HD broadcasting with High Dynamic Range. In: Int. Broadcast. Conf., Amsterdam, Holland (2016)Google Scholar
  42. 42.
    Kim, J., Tian, Y., Mangold, S., Molisch, A.F.: Quality-aware coding and relaying for 60 GHz real-time wireless video broadcasting. In: IEEE Int. Conf. Commun., pp. 5148–5152. IEEE, Budapest, Hungary (2013).  https://doi.org/10.1109/ICC.2013.6655400 Google Scholar
  43. 43.
    Korhonen, J., Wang, Y.: Effect of packet size on loss rate and delay in wireless links. In: IEEE Wireless Comms. and Network. Conf., pp. 1608–1613. IEEE, New Orleans, LA, USA (2005).  https://doi.org/10.1109/WCNC.2005.1424754 Google Scholar
  44. 44.
    Kunić, S., Šego, Z.: Beyond HDTV technology. In: 55th Int. Symp. ELMAR, pp. 83–87 (2013)Google Scholar
  45. 45.
    Lee, S., Kim, H., Eum, N.: Reduced complexity single core based HEVC video codec processor for mobile 4K-UHD applications. In: IEEE Int. Conf. on Consumer Electron., pp. 94–95. IEEE, Berlin, Germany (2016).  https://doi.org/10.1109/ICCE-Berlin.2016.7684727 Google Scholar
  46. 46.
    Lee, W., Lee, S., Kim, J.: Pipelined intra prediction using shuffled encoding order for H.264/AVC. In: IEEE Region 10 Conf., pp. 1–4. IEEE, Hong Kong, China (2006).  https://doi.org/10.1109/TENCON.2006.343970 Google Scholar
  47. 47.
    Li, B., Li, H., Li, L., Zhang, J.: λ-domain rate control algorithm for High Efficiency Video Coding. IEEE Trans. Image Process 23(9), 3841–3854 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Li, B., Sullivan, G., Xu, J.: Comparison of compression performance of HEVC Draft 6 with AVC High Profile. In: JCTVCI0409 JCT-VC Meeting, Geneva, Switzerland (2012)Google Scholar
  49. 49.
    Li, Z., Huang, Y., Liu, G., Wang, F., Zhang, Z.L., Dai, Y.: Cloud transcoder: Bridging the format and resolution gap between Internet video and mobile devices. In: ACM Int. Workshop on Network and Operating Syst. Support for Digital Audio and Video, pp. 33–38, Toronto, Ontario, Canada (2012).  https://doi.org/10.1145/2229087.2229097
  50. 50.
    Ma, J., Luo, F., Wang, S., Ma, S.: Flexible CTU-level parallel motion estimation by CPU and GPU pipeline for HEVC. In: IEEE Visual Commun. and Image Process., pp. 282–285. IEEE, Valletta, Malta (2014).  https://doi.org/10.1109/VCIP.2014.7051559 Google Scholar
  51. 51.
    Mahmouli, M.E., Walker, S.D.: 4-Gbps uncompressed video transmission over a 60-GHz Orbital Angular Momentum wireless channel. IEEE Wireless Commun. Lett. 2(2), 223–226 (2013)CrossRefGoogle Scholar
  52. 52.
    Mehendale, M., Das, S., Sharma, M., Mody, M., et al.: A true multi-standard, programmable, low-power, full HD video codec engine for smartphone HD SoC. In: IEEE Int. Solid State Conf., pp. 226–228. IEEE, San Francisco, CA, USA (2012).  https://doi.org/10.1109/ISSCC.2012.6176986 Google Scholar
  53. 53.
    Mukherjee, D., Bankoski, J., Grange, A., Han, J., Koleszar, J., Wilkins, P., Xu, Y., Bultje, R.: The latest open-source video codec VP9—An overview and preliminary results. In: Picture Coding Symp., pp. 390–393. IEEE, San Jose, CA, USA (2013).  https://doi.org/10.1109/PCS.2013.6737765 Google Scholar
  54. 54.
    Murakami, T.: The development and standardization of Ultra High Definition video technology. In: Mrak, G., Grgic, M., Kunt, M. (eds.) High-Quality Visual Experience. Signals and Commun. Technol, pp. 81–135. Springer, Berlin (2010)CrossRefGoogle Scholar
  55. 55.
    Nitsche, T., Cordeiro, C., Flores, A.B., Knightly, E.W., Perahia, E., Widmer, J.C.: IEEE 802.11ad: Directional 60 GHz communication for multi-Gbps Wi-Fi. IEEE Commun. Mag. 52(12), 132–141 (2014)CrossRefGoogle Scholar
  56. 56.
  57. 57.
    NVIDIA. Developer: Video Encode and Decode GPU Support Matrix (2017). https://developer.nvidia.com/video-encode-decode-gpu-support-matrix
  58. 58.
    Ohm, J., Sullivan, G., Schwarz, H., Tan, T., Wiegand, T.: Comparison of the coding efficiency of video coding standards—including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22(12), 1669–1684 (2012)CrossRefGoogle Scholar
  59. 59.
    Park, M., Gopalakrishnan, P.: Analysis on spatial reuse and interference in 60-GHz wireless networks. IEEE J. Sel. Areas Commun. 27(8), 1443–1452 (2009)CrossRefGoogle Scholar
  60. 60.
    Pastrana-Vidal, R.R., Gicquel, J.C., Colomes, C., Cherifi, H.: Sporadic frame dropping impact on quality perception. In: SPIE 5292, Human Vision and Electronic Imaging IX, San Jose, California, USA (2004).  https://doi.org/10.1117/12.525746
  61. 61.
    Paul, T.K., Ogunfunmi, T.: Wireless LAN comes of age: Understanding the IEEE 802.11n amendment. IEEE Circuits Syst. Mag. 8(1), 28–54 (2008)CrossRefGoogle Scholar
  62. 62.
    Perahia, E., Stacey, R.: Next Generation Wireless LANs: 802.11n and 802.11ac, 2nd edn. Cambridge Univ. Press, Cambridge (2013)CrossRefGoogle Scholar
  63. 63.
    Perez-Daniel, K.R., Sanchez, V.: Luma-aware multi-model rate-control for HDR content in HEVC. IEEE Int. Conf. on Image Process., pp. 1022–1026 (2017)Google Scholar
  64. 64.
    Perkins, C.: RTP: Audio and Video for the Internet. Addison-Wesley, Boston (2003)Google Scholar
  65. 65.
    Pieters, B., Hollemeersch, C.F., Lambert, P., Van de Walle, R.: Motion estimation for H.264/AVC on multiple GPUs using NVIDIA CUDA. In: SPIE Appl. of Digital Image Process. XXII, vol. 7443 (2009).  https://doi.org/10.1117/12.825995
  66. 66.
    Pinson, M.H., Wolf, S., Cermak, G.: HDTV subjective quality of H.264 vs. MPEG-2, with and without packet loss. IEEE Trans. Broadcast. 56(1), 86–91 (2010)CrossRefGoogle Scholar
  67. 67.
    Poynton, C.: Digital Video and HDTV: Algorithms and Interfaces. Morgan Kaufmann, San Francisco (2003)Google Scholar
  68. 68.
    Rappaport, T.S., Heath, R.W. Jr., Daniels, C.R., Murdock, N.J.: Millimeter Wave Wireless Communications. Prentice Hall, Upper Saddle River (2014)Google Scholar
  69. 69.
    Ryu, Y., Park, K., Wee, J., Kwon, K.: An efficient 4K and 8K UHD transmission scheme on convergence networks with broadcasting and LTE by using coordinated multi-point transmission system. KSII Trans. Internet Info. Syst. 11(8), 4092–4104 (2017)Google Scholar
  70. 70.
    Saito, S., Shitomi, T., Asakura, S., Satou, A., Okano, M., Murayama, K., Tsuchida, K.: 8K terrestrial transmission field tests using dual-polarized MIMO and higher-order modulation OFDM. IEEE Trans. Broadcast 62(1), 306–315 (2016)CrossRefGoogle Scholar
  71. 71.
    Sanchez, V.: Fast intra-prediction for lossless coding of screen content in HEVC. In: IEEE Global Conf. on Sig. and Info. Process., pp. 1367–1371. IEEE, Orlando, FL, USA (2015).  https://doi.org/10.1109/GlobalSIP.2015.7418422 Google Scholar
  72. 72.
    Schulze, H., Lüders, C.: Theory and Applications of OFDM and CDMA. Wiley, Chichester (2005)CrossRefGoogle Scholar
  73. 73.
    Seufert, M., Egger, S., Slanina, M., Zinner, T., Hoßfeld, T., Tran-Gia, P.: A survey on quality of experience of HTTP adaptive streaming. IEEE Commun. Surv. Tutor. 17(1), 469–492 (2015)CrossRefGoogle Scholar
  74. 74.
    Shirai, D., Kawano, T., Fujii, T., Kaneko, K., Ohta, N., Ono, S., et al.: Real time switching and streaming transmission of uncompressed 4K motion pictures. Fut. Gen. Comput. Syst. 25(2), 192–197Google Scholar
  75. 75.
    Shirai, D., Yamaguchi, T., Shimizu, T., Murooka, T., Fujii, T.: 4K SHD real-time video streaming system with JPEG 2000 parallel codec. In: IEEE Asia Pacific Conf. on Circ. and Systems, pp. 1855–1858 (2006)Google Scholar
  76. 76.
    Singh, H., Niu, H., Xiangpin, Q., Shao, H., Kwon, C., et al.: Supporting uncompressed HD video streaming without retransmissions over 60 GHz wireless networks. In: IEEE Wireless Comms. and Network. Conf., pp. 1939–1944. IEEE, Las Vegas, NV, USA (2008).  https://doi.org/10.1109/WCNC.2008.345 Google Scholar
  77. 77.
  78. 78.
    Skordoulis, D., Qiang, N., Hsiao-Hwa, C., Stephens, A.P., Changwen, L., Jamalipour, A.: IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs. IEEE Wireless Commun. Mag. 15(1), 40–47 (2008)CrossRefGoogle Scholar
  79. 79.
    Sodagar, I.: The MPEG-DASH standard for multimedia streaming over the Internet. IEEE Multimed. 18(4), 62–67 (2011)CrossRefGoogle Scholar
  80. 80.
    Sugawara, M., Choi, S.-Y., Woods, D.: Ultra-high-definition television (Rec. ITU-R BT.2020): A generational leap in the evolution of television. IEEE Sig. Proc. Mag. 31(3), 170–174 (2014)CrossRefGoogle Scholar
  81. 81.
    Valdes-Garcia, A., Reynolds, S., Natarajan, A., et al.: Single-element and phased-array transceiver chipsets for 60-GHz Gb/s communications. IEEE Commun. Mag. 49(4), 120–131 (2011)CrossRefGoogle Scholar
  82. 82.
    van Kester, S., Xiao, T., Kooij, R.E., Brunnstróm, K., Ahmed, O.K.: Estimating the impact of single and multiple freezes on video quality. In: SPIE 7865, Human Vision and Electronic Imaging XVI (2011).  https://doi.org/10.1117/12.873390
  83. 83.
    Wang, X., Soni, L., Chen, M., Yang, J.: Paralleling variable block size motion estimation of HEVC on CPU plus GPU platform. In: IEEE Int. Conf. Multimed. and Expo., pp. 1–5. IEEE, San Jose, CA, USA (2013).  https://doi.org/10.1109/ICMEW.2013.6618412 Google Scholar
  84. 84.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  85. 85.
    Wiegand, T., Sullivan, G., Bjøntegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 1685–1696 (2003)Google Scholar
  86. 86.
    Wu, J., Yuen, C., Cheung, N.-M., Chen, J.: Delay-constrained high definition video transmission in heterogeneous wireless networks with multi-homed terminals. IEEE Trans. Mobile Comput. 15(3), 641–655 (2016)CrossRefGoogle Scholar
  87. 87.
    Wu, N., Wen, M., Su, H., Ren, J., Zhang, J.: A parallel H.264 encoder with CUDA: Mapping and evaluation. In: IEEE 18th Int. Conf. on Parallel and Distrib. Syst., pp. 276–283. IEEE, Singapore (2012).  https://doi.org/10.1109/ICPADS.2012.46 Google Scholar
  88. 88.
    Yuan, H., Fu, H., Liu, J., Hou, J., Kwong, S.: Non-cooperative game theory based rate adaptation for dynamic video streaming over HTTP. IEEE Trans. Mobile Comput. (2018).  https://doi.org/10.1109/TMC.2018.2800749 Google Scholar
  89. 89.
    Yuan, H., Wei, X., Yang, X., Xiao, J., Kwong, S.: Cooperative bargaining game-based multiuser bandwidth allocation for dynamic adaptive streaming over HTTP. IEEE Trans. Multimed. 20(1), 183–197 (2018)CrossRefGoogle Scholar
  90. 90.
    Zhang, D., Liu, D.: An adaptive cross-layer optimization scheme for light compressed High-definition video transmission based on 60 GHz system. In: IEEE Int. Conf. Commun. Technol., pp. 671–675. IEEE, Guilin, China (2013).  https://doi.org/10.1109/ICCT.2013.6820459 Google Scholar
  91. 91.
    Zhang, H., Ma, Z.: Fast intra mode decision for high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 24(4), 660–668 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of SurreyLondonUK
  2. 2.Qassim UniversityBuraydahSaudi Arabia
  3. 3.University of EssexColchesterUK

Personalised recommendations