Journal of Real-Time Image Processing

, Volume 16, Issue 3, pp 649–660 | Cite as

Efficient stego key recovery based on distribution differences of extracting message bits

  • Jiufen Liu
  • Junjun Gan
  • Junchao Wang
  • Che Xu
  • Xiangyang LuoEmail author
Special Issue Paper


The extraction of embedded messages, i.e., extraction attacks are the ultimate purpose of steganalysis, with great practical significance to obtain covert communication content and covert communication forensics. For steganography using a stego key, the extraction attacks are equivalent to the stego key recovery. This paper mainly studies the methods of efficient stego key recovery for LSB steganography in JPEG domain. According to the distribution differences of extracting message bits generated by the correct and incorrect keys, stego key recovery is transformed into the hypothesis test of the message bits distribution extracted by the correct and incorrect keys. Firstly, by fitting the message bits distribution extracted by the correct key, a stego key recovery method based on nonparametric hypothesis test is proposed. Secondly, by utilizing the distribution differences between message bits extracted by the correct and incorrect keys, a stego key recovery method based on parametric hypothesis test is proposed. And then, formulas are given for calculating the sample size and threshold in the proposed stego key recovery model, on the basis of type I error and type II error. Experimental results show that the proposed method can successfully recover the stego key of OutGuess 0.13b, OutGuess0.2, JPEG domain random LSB matching steganography and random F3 steganography, the performance is superior to that of existing methods.


Steganalysis Extraction attacks JPEG domain LSB steganography Stego key recovery 



This work was supported by the National Natural Science Foundation of China (Grant no. U1636219, U1736214, 61572052, 61602508, and 61772549), the National Key R&D Program of China (Grant no. 2016YFB0801303 and 2016QY01W0105), Plan for Scientific Innovation Talent of Henan Province (no. 2018JR0018), and the Key Technologies R&D Program of Henan Province (Grant no.162102210032).


  1. 1.
    Qin, C., Chang, C.C., Huang, Y.H., Liao, L.T.: An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Trans. Circ. Syst. Video Technol. 23(7), 1109–1118 (2013)CrossRefGoogle Scholar
  2. 2.
    Zhang, Y., Qin, C., Zhang, W.M., Liu, F.L., Luo, X.Y.: On the fault-tolerant performance for a class of robust image steganography. Sig. Process. 146, 99–111 (2018)CrossRefGoogle Scholar
  3. 3.
    Qin, C., Chang, C.C., Chiu, Y.P.: A novel joint data-hiding and compression scheme based on SMVQ and image inpainting. IEEE Trans. Image Process. 23(3), 969–978 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ma, Y.Y., Luo, X.Y., Li, X.L., Bao, Z.K., Zhang, Y.: Selection of rich model steganalysis features based on decision rough set α-positive region reduction. IEEE Trans. Circ. Syst. Video Technol. 99, 1 (2018). CrossRefGoogle Scholar
  5. 5.
    Luo, X.Y., Song, X.F., Li, X.L., Zhang, W.M., Lu, J.C., Yang, C.F., Liu, F.L.: Steganalysis of HUGO steganography based on parameter recognition of syndrome-trellis-codes. Multimed. Tools Appl. 75(21), 13557–13583 (2016)CrossRefGoogle Scholar
  6. 6.
    Upham, D.: JPEG-JSteg-V4, steganographic algorithm JSteg.
  7. 7.
    Provos, N.: Defending against statistical steganalysis. Proceedings of the 10th conference on USENIX Security Symposium-Volume 10, USENIX Association, pp. 24–24 (2001)Google Scholar
  8. 8.
    Westfeld, A.: F5-A steganographic algorithm. Proceedings of the 4th International Workshop on Information Hiding, Springer-Verlag, pp 289–302 (2001)Google Scholar
  9. 9.
    Guo, L.J., Ni, J.Q., Shi, Y.Q.: Uniform embedding for efficient JPEG Steganography. IEEE Trans. Inf. Forensics Secur. 9(5), 814–825 (2014)CrossRefGoogle Scholar
  10. 10.
    Holub, V., Fridrich, J.: Digital image steganography using universal distortion. Proceedings of the 1st ACM Workshop on Information Hiding and Multimedia Security, pp. 59–68 (2013)Google Scholar
  11. 11.
    Wang, Z.C., Zhang, X.P., Yin, Z.X.: Hybrid distortion function for JPEG steganography. J. Electron. Imaging 25(5), 050501 (2016)CrossRefGoogle Scholar
  12. 12.
    Denemark, T., Fridrich, J.: Model based steganography with precover. Electron. Imaging. 2017(7), 56–66 (2017)Google Scholar
  13. 13.
    Gan, J.J., Liu, J.F., Luo, X.Y., Yang, C.F., Liu, F.L.: Reliable steganalysis of HUGO steganography based on partially known plaintext. Multimed. Tools Appl. (2017). Google Scholar
  14. 14.
    Fridrich, J., Goljan, M., Soukal, D.: Searching for the stego-key. Proceedings of SPIE 5306, Security, Steganography, and Watermarking of Multimedia Contents VI, San Jose, pp. 70–82 (2004)Google Scholar
  15. 15.
    Pevný, T., Ker, A.D.: Steganographic key leakage through payload metadata. Proceedings of the 2nd ACM Workshop on Information Hiding and Multimedia Security, pp. 109–114 (2014)Google Scholar
  16. 16.
    Fridrich, J., Goljan, M., Soukal, D., Holotyak, T.: Forensic steganalysis: determining the stego key in spatial domain steganography. Proceedings of SPIE 5681, Security, Steganography, and Watermarking of Multimedia Contents VII, San Jose, pp. 631–642 (2005)Google Scholar
  17. 17.
    Liu, J., Tang, G.M.: Stego key estimation in LSB steganography. J. Multimed. 7(4), 309–313 (2012)CrossRefGoogle Scholar
  18. 18.
    Chen, J.Y., Zhu, Y.F., Zhang, W.M., Liu, J.F.: Chosen-key extracting attack to random LSB steganography. J. Commun. 31(5), 73–80 (2010)Google Scholar
  19. 19.
    Liu, J.F., Tian, Y.G., Han, T., Wang, J.C., Luo, X.Y.: Stego key searching for LSB steganography on JPEG decompressed image. Sci. China Inf. Sci. 59(3), 1–15 (2016)CrossRefGoogle Scholar
  20. 20.
    Xu, C., Liu, J.F., Gan, J.J., Luo, X.Y.: Stego key recovery based on the optimal hypothesis test. Multimed. Tools Appl. 2017(4), 1–20 (2017). Google Scholar
  21. 21.
    Giannoula, A., Boulgouris, N.V., Hatzinakos, D., Plataniotis, K.: Watermark detection for noisy interpolated images. IEEE Trans. Circ. Syst. II Express Briefs 53(5), 359–403 (2006)CrossRefGoogle Scholar
  22. 22.
    Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. Springer, Berlin (2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiufen Liu
    • 1
    • 2
  • Junjun Gan
    • 1
    • 2
  • Junchao Wang
    • 1
    • 2
  • Che Xu
    • 1
    • 2
  • Xiangyang Luo
    • 1
    • 2
    Email author
  1. 1.Zhengzhou Science and Technology InstituteZhengzhouChina
  2. 2.State Key Laboratory of Mathematical Engineering and Advanced ComputingZhengzhouChina

Personalised recommendations