Journal of Real-Time Image Processing

, Volume 16, Issue 6, pp 2159–2171 | Cite as

LAMB-DASH: a DASH-HEVC adaptive streaming algorithm in a sharing bandwidth environment for heterogeneous contents and dynamic connections in practice

  • Angel MartinEmail author
  • Roberto Viola
  • Josu Gorostegui
  • Mikel Zorrilla
  • Julian Florez
  • Jon Montalban
Original Research Paper


HTTP Adaptive Streaming (HAS) offers media players the possibility to dynamically select the most appropriate bitrate according to the connectivity performance. A best-effort strategy to take instant decisions could dramatically damage the overall Quality of Experience (QoE) with re-buffering times, and potential image freezes along with quality fluctuations. This is more critical in environments where multiple clients share the available bandwidth. Here, clients compete for the best connectivity. To address this issue, we propose LAMB-DASH, an online algorithm that, based on the historical probability of the playout session, improves the Quality Level (QL) chunk Mean Opinion Score (c-MOS). LAMB-DASH is designed for heterogeneous contents and changeable connectivity performance. It removes the need to access a probability distribution to specific parameters and conditions in advance. This way, LAMB-DASH focuses on the fast response and on the reduced computing overhead to provide a universal bitrate selection criterion. This paper validates the proposed solution in a real environment which considers live and on-demand Dynamic Adaptive Streaming over HTTP (DASH) and High-Efficiency Video Coding (HEVC) services implemented on top of GStreamer clients.


Adaptive streaming DASH HEVC QoE Dense client environments 



This work was fully supported by the European Commission project CogNet, 671625 (H2020-ICT-2014-2, Research and Innovation action).


  1. 1.
    Saad M.A. et al.: Impact of camera pixel count and monitor resolution perceptual image quality. In: Colour and Visual Computing Symposium (CVCS), pp. 1–6 (2015). doi: 10.1109/CVCS.2015.7274887
  2. 2.
    Kathirgamanathan, P., Bushby, L.M., Kumaraverl, M., Ravichandran, S., Surendrakumar, S.: Electroluminescent organic and quantum dot LEDs: the state of the art. J. Disp. Technol. 11(5), 480–493 (2015). doi: 10.1109/JDT.2015.2418279 CrossRefGoogle Scholar
  3. 3.
    Cisco Inc.: Visual Networking Index: Forecast and Methodology, 2014–2019 (2016). (Online)
  4. 4.
    Cisco Inc.: Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014–2019 (2016). (Online)
  5. 5.
    Sodagar, I.: The MPEG-DASH standard for multimedia streaming over the internet. IEEE MultiMed. 18(4), 62–67 (2011). doi: 10.1109/MMUL.2011.71 CrossRefGoogle Scholar
  6. 6.
    Maillé, P., Schwartz, G.: Content providers volunteering to pay network providers: Better than neutrality. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS 2016), pp. 484–489 (2016). doi: 10.1109/INFCOMW.2016.7562125
  7. 7.
    Begen, A., Akgul, T., Baugher, M.: Watching video over the web: part 1: streaming protocols. IEEE Internet Comput. 15(2), 54–63 (2011). doi: 10.1109/MIC.2010.155 CrossRefGoogle Scholar
  8. 8.
    Seufert, M., Egger, S., Slanina, M., Zinner, T., Hofeld, T., Tran-Gia, P.: A survey on quality of experience of HTTP adaptive streaming. IEEE Commun. Surv. Tutor. 17(1), 469–492 (2015). doi: 10.1109/COMST.2014.2360940 CrossRefGoogle Scholar
  9. 9.
    Wan, S., Hou, J., Yang, F., Lee, J.: Two-dimensional rate model for video coding. Advanced Electrical and Electronics Engineering. Lecture Notes in Electrical Engineering, vol 87. Springer, Berlin, pp. 155-162 (2011). doi: 10.1007/978-3-642-19712-3_19 CrossRefGoogle Scholar
  10. 10.
    Li, B., Li, H., Li, L., Zhang, J.: \(\lambda\) Domain rate control algorithm for high efficiency video coding. IEEE Trans. Image Process. 23(9), 3841–3854 (2014). doi: 10.1109/TIP.2014.2336550 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012). doi: 10.1109/TCSVT.2012.2221191 CrossRefGoogle Scholar
  12. 12.
    Miller, K., Al-Tamimi, A.K., Wolisz, A.: QoE-based low-delay live streaming using throughput predictions. ACM Trans. Multimed. Comput. Commun. Appl. 13(1), 4–24 (2016). doi: 10.1145/2990505 CrossRefGoogle Scholar
  13. 13.
    Chiariotti, F., D’Aronco, S., Toni, L., Frossard, P.: Online learning adaptation strategy for DASH clients. In: Proceedings of the 7th International Conference on Multimedia Systems (2016). doi: 10.1145/2910017.2910603
  14. 14.
    Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with FESTIVE. In: Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies, pp. 97–108 (2012). doi: 10.1109/TNET.2013.2291681 CrossRefGoogle Scholar
  15. 15.
    Li, Z., Zh, X., Gahm, J., Pan, R., Hu, H., Begen, A.C., Oran, D.: Probe and adapt: rate adaptation for HTTP video streaming at scale. IEEE J. Sel. Areas Commun. 32(4), 719–733 (2014). doi: 10.1109/JSAC.2014.140405 CrossRefGoogle Scholar
  16. 16.
    Li, Z., Begen, A.C., Gahm, J., Shan, Y., Osler, B., Oran, D.: Streaming video over HTTP with consistent quality. In: Proceedings of the 5th ACM multimedia systems conference, pp. 248–258 (2014). doi: 10.1145/2557642.255765
  17. 17.
    Claeys, M., Latre, S., Famaey, J., Wu, T., Van Leekwijck, W., De Turck, F.: Design and optimisation of a (FA) Q-learning-based HTTP adaptive streaming client. Connect. Sci. 26(1), 25–43 (2014). doi: 10.1080/09540091.2014.885273 CrossRefGoogle Scholar
  18. 18.
    Chen, J., Ammar, M., Fayed, M. Fonseca, R.: Client-driven network-level QoE fairness for encrypted ’DASH-S’. In: Proceedings of the 2016 workshop on QoE-based analysis and management of data communication networks (Internet-QoE ’16), pp. 55–60 (2016). doi: 10.1145/2940136.2940144
  19. 19.
    Petrangeli, S., Famaey, J., Claeys, M., Latr, S., De Turck, P.: QoE-driven rate adaptation heuristic for fair adaptive video streaming. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 12(2), 28 (2015). doi: 10.1145/2818361 CrossRefGoogle Scholar
  20. 20.
    ITU-T Recommendation P.800.: Mean Opinion Score (MOS) Terminology (2016)Google Scholar
  21. 21.
    De Vriendt, J., De Vleeschauwer, D., Robinson, D.: Model for estimating QoE of video delivered using HTTP adaptive streaming. In: IFIP/IEEE International Symposium on Integrated Network Management, pp. 1288–1293 (2013)Google Scholar
  22. 22.
    Claeys, M., Latre, S., Famaey, J., De Turck, F.: Design and evaluation of a self-learning HTTP adaptive video streaming client. IEEE Commun. Lett. 18(4), 716–719 (2014). doi: 10.1109/LCOMM.2014.020414.132649 CrossRefGoogle Scholar
  23. 23.
    Toni, L., Aparicio-Pardo, R., Pires, K., Simon, G., Blanc, A., Frossard, P.: Optimal selection of adaptive streaming representations. ACM Trans. Multimed. Comput. Commun. Appl. 11(2), 43 (2015). doi: 10.1145/2700294 CrossRefGoogle Scholar
  24. 24.
    Timmerer, C., Maiero, M., Rainer, B., Petscharnig, S., Weinberger, D., Mueller, C., Lederer, S.: Quality of Experience of Adaptive HTTP Streaming in Real-World Environments. IEEE COMSOC MMTC E-Letter (2015). doi: 10.1145/2676652.2676656 CrossRefGoogle Scholar
  25. 25.
    Pardalos, P.M.: Complexity in numerical optimization. World Scientific, Singapore (1993)CrossRefGoogle Scholar
  26. 26.
    Mok R.K., Chan, E.W., Chang, R.K.: Measuring the quality of experience of HTTP video streaming. In: IFIP/IEEE International Symposium on Integrated Network Management, pp. 485–492 (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Angel Martin
    • 1
    Email author
  • Roberto Viola
    • 1
  • Josu Gorostegui
    • 1
  • Mikel Zorrilla
    • 1
  • Julian Florez
    • 2
  • Jon Montalban
    • 3
  1. 1.Digital Media and Broadcasting Technologies DepartmentVicomtech-IK4San SebastiánSpain
  2. 2.Electrical, Electronic and Control Engineering DepartmentTecnun, Universidad de NavarraSan SebastiánSpain
  3. 3.Electronic Technology DepartmentUPV/EHU UniversitySan SebastiánSpain

Personalised recommendations