Advertisement

Journal of Real-Time Image Processing

, Volume 16, Issue 6, pp 1943–1958 | Cite as

The algorithm and VLSI architecture of a high efficient motion estimation with adaptive search range for HEVC systems

  • Tzu-Ting Liao
  • Chung-An ShenEmail author
  • Yu-Hao Tseng
Original Research Paper

Abstract

This paper presents a novel algorithm and VLSI architecture of motion estimation (ME) for high efficiency video coding systems. The proposed algorithm examines a much smaller set of search candidates and thus greatly reduces the computational complexity. Furthermore, in order to strike a balance between the quality of the Video and the efficiency of the system, this algorithm possesses the advantages that the number of search candidates is adaptive to the characteristic of the Video content. The simulation results show that, compared to the HM reference software, the proposed algorithm leads to a 96% reduction in search candidates with only 1.98% increment in average bitrate. Based on this algorithm, a hardware-efficient VLSI architecture of ME is designed and implemented with 90 nm technology. The experimental results show that, occupying the area complexity of 274.5 kGE, the presented design achieves 60 frames per second with resolution of 3840 × 2160 at the frequency of 201 MHz. The proposed ME system enhances the hardware efficiency by at least 50% compared to the prior works.

Keywords

Motion estimation High efficiency video coding (HEVC) Adaptive search range Low computational complexity Hardware efficiency 

References

  1. 1.
    Sullivan, G.J., Ohm, J.-R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) Standard. IEEE Trans. Circt. Syst. Video Technol. 22(12), 1648–1667 (2012)Google Scholar
  2. 2.
    Sinangil, M.E., Sze, V., Zhou, M., Chandrakasan, A.P.: Memory cost vs. coding efficiency trade-offs for HEVC motion estimation engine. In: IEEE International Conference Image Processing, pp. 1533–1536, September (2012)Google Scholar
  3. 3.
    Grellert, M., Shafique, M., Karim Kha, M.U., Agostini, L., Mattos, J.C.B., Henkel, J.: An adaptive workload management scheme for HEVC encoding. In: IEEE International Conference on Image Processing, vol. 1, pp. 1850–1854, September (2013)Google Scholar
  4. 4.
    Kim, I.-K., Min, J., Lee, T., Ham, W.-J., Park, J.: Block partitioning structure in the HEVC standard. IEEE Trans. Circt. Syst. Video Technol. 22(12), 1697–1706 (2012)CrossRefGoogle Scholar
  5. 5.
    Pourazad, M.T., Doutre, C., Azimi, M., Nasiopoulos, P.: HEVC: the new gold standard for video compression: how does HEVC Compare with H.264/AVC? IEEE Consu. Elect. Mag. 1, 36–46 (2012)CrossRefGoogle Scholar
  6. 6.
    JCT-VC Reference Software HM-10.1: ISO/IEO MPEG and ITU-TGoogle Scholar
  7. 7.
    Cheung, C.-H.: Novel cross-diamond-hexagonal search algorithms for fast block motion estimation. IEEE Trans. Multimedia 7, 16–22 (2002)CrossRefGoogle Scholar
  8. 8.
    Xin, Z., Wei, Z.: A fast mixed integer-pixel search algorithm based on centered prediction for H.264. In: 2010 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), vol. 9, pp. 214–217, (2010)Google Scholar
  9. 9.
    Li, X., Wang, R., Wang, W., Wang, Z., Dong, S.: Fast motion estimation methods for HEVC. Broadband Multimedia Syst. Broadcasting 1, 1–4 (2014)Google Scholar
  10. 10.
    Sinangil, M.E., Chandrakasan, A.P., Sze, V., Zhou, M.: Hardware motion estimation search algorithm development for high efficiency video coding (HEVC) standard. In: 2012 IEEE International Conference on Image Processing, pp. 1529–1532 (2012)Google Scholar
  11. 11.
    Jou, S.Y., Chang, S.J., Chang, T.S.: Fast motion estimation algorithm and design for real time QFHD high efficiency video coding. IEEE Trans. Circt. Syst. Video Technol. 25, 1533–1544 (2015)CrossRefGoogle Scholar
  12. 12.
    Hsieh, J.-H., Chang, T.-S.: Algorithm and architecture design of bandwidth-oriented motion estimation for real-time mobile video applications. IEEE Trans. VLSI Syst. 21, 33–42 (2012)CrossRefGoogle Scholar
  13. 13.
    Xu, Y., Liu, J., Zhang, Z., Teng, R.K.F.: A high performance VLSI architecture for integer motion estimation in HEVC. In: 2013 International Conference on ASIC, pp. 1–4 (2013)Google Scholar
  14. 14.
    Zhou, J., Zhou, D., He, G., Goto, S.: A 1.59Gpixel/s motion estimation processor with −211-to-211 search range for UHDTV video encoder. In: IEEE International Symposium VLSI Circuit, pp. C286–C287 (2013)Google Scholar
  15. 15.
    Reza Soroushmehr, S.M., Samavi, S., Shirani, S.: Simple and efficient motion estimation algorithm by continuum search. Springer J Multimedia Tools Appl. 71, 1615–1633 (2014)CrossRefGoogle Scholar
  16. 16.
    Kim, S., Lee, D.-K., Sohn, C.-B., Oh, S.-J.:“Fast motion estimation for HEVC with adaptive search range decision on CPU and GPU. In: IEEE Global Conference on Signal and Information Processing, pp. 349–353 (2014)Google Scholar
  17. 17.
    Medhat, A., Shalaby, A., Sayed, M.S., Elsabrouty, M., Mehdipour, F.: Fast center search algorithm with hardware implementation for motion estimation in HEVC encoder. In: International Conference on Electronics, Circuits, and Systems, pp. 155–158 (2014)Google Scholar
  18. 18.
    Li, G.-L., Wang, C.-C., Chiang, K.-H.: An efficient motion vector prediction method for avoiding AMVP data dependency for HEVC. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 7363–7366 (2014)Google Scholar
  19. 19.
    Ruiz, G.A., Michell, J.A.: An efficient VLSI processor chip for variable block size integer motion estimation in H.264/AVC. Signal Proc. Image Commun. 26, 289–303 (2011)CrossRefGoogle Scholar
  20. 20.
    Byun, J., Jung, Y., Kim, J.: Design of integer motion estimator of HEVC for asymmetric motion-partitioning mode and 4 K-UHD. IEEE Elect. Lett. 49, 1142–1143 (2013)CrossRefGoogle Scholar
  21. 21.
    Kao, C.-Y., Lin, Y.-L.: A memory-efficient and highly parallel architecture for variable block size integer motion estmation in H.264/AVC. IEEE Trans. VLSI Syst. 18, 866–874 (2009)CrossRefGoogle Scholar
  22. 22.
    Chen, C.-Y., Chien, S.-Y., Huang, Y.-W., Wang, T.-C., Chen, L.-G.: Analysis and architecture design of variable block-size motion estimation for H.264/AVC. In: IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, pp. 578–593 (2006)Google Scholar
  23. 23.
    Nalluri, P., Alves, L.N., Navarro, A.: A novel SAD architecture for variable block size motion estimation in HEVC video coding. In: IEEE International Symposium on Systems on Chip, pp. 1–4 (2013)Google Scholar
  24. 24.
    Bjontegaard, G.: Calculation of average PSNR differences between RD-curves. In: document VCEG-M33, ITU-T SG16 Q.6 video coding experts group, (2001)Google Scholar
  25. 25.
    Ultra-high-definition Video Group, Test Sequences: (Online). ttps://media.xiph.org/video/derf/ (2015)Google Scholar
  26. 26.
    Tan, T.K., Weerakkody, R., Mrak, M., Ramzan, N., Baroncini, V., Ohm, J.-R., Sullivan, G.J.: Video quality evaluation methodology and verification testing of HEVC compression performance. IEEE Trans. Circt. Syst. Video Technol. 26, 76–90 (2016)CrossRefGoogle Scholar
  27. 27.
    Pastuszak, G., Trochimiuk, M.: Algorithm and architecture design of the motion estimation for the H.265/HEVC 4 K-UHD encoder. J. Real-Time Image Proc. 12, 517–529 (2016)CrossRefGoogle Scholar
  28. 28.
    Bossen, F.: Common test conditions and software reference configurations, In document JCTVC-L1100, Geneva (2013)Google Scholar
  29. 29.
    Pan, Z., et al.: Fast motion estimation based on content property for low-complexity H.265/HEVC encoder. IEEE Trans. Broadcast. 62(3), 675–684 (2016)CrossRefGoogle Scholar
  30. 30.
    González, D., et al.: A low cost matching motion estimation sensor based on the NIOS II microprocessor. Sensors 12(10), 13126–13149 (2012)CrossRefGoogle Scholar
  31. 31.
    González, D., et al.: Acceleration of block-matching algorithms using a custom instruction-based paradigm on a Nios II microprocessor. EURASIP J. Adv. Signal Process. 2013(1), 118 (2013)CrossRefGoogle Scholar
  32. 32.
    Peng, W.H., et al.: An interframe prediction technique combining template matching prediction and block-motion compensation for high-efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 23(8), 1432–1446 (2013)CrossRefGoogle Scholar
  33. 33.
    Jiang, C., Nooshabadi, S.: A scalable massively parallel motion and disparity estimation scheme for multiview video coding. IEEE Trans. Circuits Syst. Video Technol. 26(2), 346–359 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Electronic and Computer EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan, ROC

Personalised recommendations