Advertisement

Journal of Real-Time Image Processing

, Volume 16, Issue 2, pp 321–337 | Cite as

Real-time implementation of an adaptive simultaneous dynamic range compression and local contrast enhancement algorithm on a GPU

  • Chi-Yi TsaiEmail author
  • Chih-Hung Huang
Original Research Paper
  • 154 Downloads

Abstract

Dynamic range compression is a fundamental function required in digital video cameras and display monitors to improve the visual appeal of color images. This paper presents a real-time implementation of an algorithm for adaptive dynamic range compression and contrast enhancement on a graphics processing unit (GPU). To achieve this, we first designed an adaptive intensity transfer function to handle the enhancement of standard-dynamic-range (8 bits/channel) images with both low- and high-intensity. The proposed algorithm then combines the intensity transfer function with an existing simultaneous dynamic range compression and local contrast enhancement (SDRCLCE) algorithm for the simultaneous compression of dynamic range and enhancement of local contrast. To reach real-time performance in processing high-resolution color images, the proposed algorithm is implemented using an NVIDIA GeForce GTX 650 Ti GPU based on NVIDIA’s Compute Unified Device Architecture (CUDA) parallel programming running on a 3.33 GHz Intel Core i5-661 CPU. Compared with a LUT-accelerated implementation, the proposed GPU implementation was shown to accelerate the processing of 1024 × 1024 color images by 11.1 times and color images of 4096 × 4096 pixels by 7.5 times, including the cost of memory copy between the host and device.

Keywords

Color image enhancement Dynamic range compression Contrast enhancement Real-time implementation GPU acceleration NVIDIA CUDA 

Notes

Acknowledgments

This work was supported by the National Science Council of Taiwan, ROC, under grant NSC 103-2221-E-032-068 and 103-2632-E-032-001-MY3.

References

  1. 1.
    Jobson, D., Rahman, Z., Woodell, G.: A multiscale Retinex for bridging the gap between color images and human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)CrossRefGoogle Scholar
  2. 2.
    Rahman, Z., Jobson, D., Woodell, G.: Retinex processing for automatic image enhancement. J. Electron. Imaging 13(1), 100–110 (2004)CrossRefGoogle Scholar
  3. 3.
    Horiuchi, T., Tominaga, S.: HDR image quality enhancement based on spatially variant retinal response. EURASIP J. Image Video Process. 2010(438958), 1–11 (2010)CrossRefGoogle Scholar
  4. 4.
    Chen, S.-H., Beghdadi, A.: Natural enhancement of color image. EURASIP J. Image Video Process. 2010(175203), 1–19 (2010)CrossRefGoogle Scholar
  5. 5.
    Saponara, S., Fanucci, L., Marsi, S., Ramponi, G.: Algorithmic and architectural design for real-time and power-efficient Retinex image/video processing. J. Real Time Image Process. 1(4), 267–283 (2007)CrossRefGoogle Scholar
  6. 6.
    Saponara, S., Fanucci, L., Marsi, S., Ramponi, G., Kammler, D., Witte, E.M.: Application-specific instruction-set processor for retinex-like image and video processing. IEEE Trans. Circuits Syst. II Exp. Briefs 54(7), 596–600 (2007)CrossRefGoogle Scholar
  7. 7.
    Vonikakis, V., Andreadis, I., Gasteratos, A.: Fast centre-surround contrast modification. IET Image Process. 2(1), 19–34 (2008)CrossRefGoogle Scholar
  8. 8.
    Iakovidou, C., Vonikakis, V., Andreadis, I.: FPGA implementation of a real-time biologically inspired image enhancement algorithm. J. Real Time Image Process. 3(4), 269–287 (2008)CrossRefGoogle Scholar
  9. 9.
    Hassan, F., Carletta, J.E.: An FPGA-based architecture for a local tone-mapping operator. J. Real Time Image Process. 2(4), 293–308 (2007)CrossRefGoogle Scholar
  10. 10.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. In: Proceedings of the 29th annual conference on computer graphics and interactive techniques, pp. 267–276 (2002)Google Scholar
  11. 11.
    Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K.: High dynamic range imaging: acquisition, display, and image-based lighting, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2010)Google Scholar
  12. 12.
    Banterle, F., Artusi, A., Debattista, K., Chalmers, A.: Advanced high dynamic range imaging: theory and practice. A. K. Peters, Ltd, Natick, MA, USA (2011)Google Scholar
  13. 13.
    Vytla, L., Hassan, F., Carletta, J.E.: A real-time implementation of gradient domain high dynamic range compression using a local Poisson solver. J. Real Time Image Process. 8(2), 153–167 (2013)CrossRefGoogle Scholar
  14. 14.
    Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. Graph. 21(3), 249–256 (2002)CrossRefGoogle Scholar
  15. 15.
    Artusi, A., Bittner, J., Wimmer, M., Wilkie, A.: Delivering interactivity to complex tone mapping operators. In: Proceedings of eurographics symposium on rendering, pp. 38–44 (2003)Google Scholar
  16. 16.
    Goodnight, N., Wang, R., Humphreys, G.: Computation on programmable graphics hardware. IEEE Comput. Graphics Appl. 25(5), 12–15 (2005)CrossRefGoogle Scholar
  17. 17.
    Slomp, M., Oliveira, M.M.: Real-time photographic local tone reproduction using summed-area tables. In: Proceedings of computer graphics international conference, pp. 82–91 (2008)Google Scholar
  18. 18.
    Akyüz, A.O.: High dynamic range imaging pipeline on the GPU. J. Real Time Image Process. 10(2), 273–287 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Akil, M., Grandpierre, T., Perroton, L.: Real-time dynamic tone-mapping operator on GPU. J. Real Time Image Process. 7(3), 165–172 (2012)CrossRefGoogle Scholar
  20. 20.
    Ureña, R., Martínez-Cañada, P., Gómez-López, J.M., Morillas, C., Pelayo, F.: Real-time tone mapping on GPU and FPGA. EURASIP J. Image Video Process 2012(1), 1–15 (2012)CrossRefGoogle Scholar
  21. 21.
    Artusi, A., Akyüz, A.O., Roch, B., Michael, D., Chrysanthou, Y., Chalmers, A.: Selective local tone mapping. In: Proceedings of IEEE international conference on image processing, pp. 15–18 (2013)Google Scholar
  22. 22.
    Aubry, M., Paris, S., Hasinoff, S.W., Kautz, J., Durand, F.: Fast local Laplacian filters: theory and applications. ACM Trans. Graphics 33(5), 167.1–167.14 (2014)CrossRefGoogle Scholar
  23. 23.
    Wang, Y.-W., Huang, W.-B.: A CUDA-enabled parallel algorithm for accelerating retinex. J. Real Time Image Process. 9(3), 407–425 (2014)CrossRefGoogle Scholar
  24. 24.
    Pattanaik, S.N., Tumblin, J., Yee, H., Greenberg, D.P.: Time-dependent visual adaptation for fast realistic display. In: Computer graphics (SIGGRAPH 2000 proceedings), pp. 47–54 (2000)Google Scholar
  25. 25.
    Drago, F., Myszkowski, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. In: Computer graphics forum (Eurographics 2003 conference proceedings), pp. 419–426 (2003)Google Scholar
  26. 26.
    Irawan, P., Ferwerda, J.A., Marschner, S.R.: Perceptually based tone mapping of high dynamic range image streams. In: Euro-graphics symposium on rendering, pp. 231–242 (2005)Google Scholar
  27. 27.
    NVIDIA’s GeForce 8800 GTX webpage. http://www.geforce.com/hardware/desktop-gpus/geforce-8800-gtx (2015). Accessed 10 Oct 2015
  28. 28.
    NVIDIA’s ION graphic processors webpage. http://www.nvidia.com/object/sff_ion.html (2015). Accessed 10 Oct 2015
  29. 29.
    NVIDIA’s GeForce GTX 560M webpage. http://www.geforce.com/hardware/notebook-gpus/geforce-gtx-560m (2015). Accessed 10 Oct 2015
  30. 30.
    NVIDIA’s CUDA Toolkit webpage. http://www.nvidia.com/content/cuda/cuda-toolkit.html (2015). Accessed 10 Oct 2015
  31. 31.
    NVIDIA’s Tesla C1060 Computing Processor Board Specification. http://www.nvidia.com/docs/IO/56483/Tesla_C1060_boardSpec_v03.pdf (2008). Accessed 10 Oct 2015
  32. 32.
    Tsai, C.-Y., Chou, C.-H.: A novel simultaneous dynamic range compression and local contrast enhancement algorithm for digital video cameras. EURASIP Journal on Image and Video Processing 2011(6), 1–19 (2011)Google Scholar
  33. 33.
    Tsai, C.-Y., Huang, C.-H.: An adaptive dynamic range compression with local contrast enhancement algorithm for real-time color image enhancement. J. Real-Time Image Proc. 10(2), 255–272 (2015)CrossRefGoogle Scholar
  34. 34.
    Tao, L., Asari, V.K.: Adaptive and integrated neighborhood-dependent approach for nonlinear enhancement of color images. J. Electron. Imaging 14(4), 043006-1-043006-14 (2005)Google Scholar
  35. 35.
    Reinhard, E., Kunkel, T., Marion, Y., Brouillat, J., Cozot, R., Bouatouch, K.: Image display algorithms for high and low dynamic range display devices. J. Soc. Inform. Display 15(12), 997–1014 (2007)CrossRefGoogle Scholar
  36. 36.
    Marsi, S., Impoco, G., Ukovich, A., Carrato, S., Ramponi, G.: Video enhancement and dynamic range control of HDR sequences for automotive applications. EURASIP J. Adv. Signal Process. 2007(080971), 1–9 (2007)zbMATHGoogle Scholar
  37. 37.
    Tao, L., Tompkins, R., Asari, V. K.: An illuminance-reflectance model for nonlinear enhancement of color images. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp. 159–166 (2005)Google Scholar
  38. 38.
    Unaldi, N., Asari, V.K., Rahman, Z.: Fast and robust wavelet-based dynamic range compression with local contrast enhancement. In: Proceedings of SPIE 6978, pp. 697805-1–697805-12 (2008)Google Scholar
  39. 39.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of IEEE international conference on computer vision, pp. 839–846 (1998)Google Scholar
  40. 40.
    Garnett, R., Huegerich, T., Chui, C., He, W.: A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 14(11), 1747–1754 (2005)CrossRefGoogle Scholar
  41. 41.
    Buades, A., Coll, B., Morel, J.-M.: Nonlocal image and movie denoising. Int. J. Comput. Vision 76(2), 123–139 (2008)CrossRefGoogle Scholar
  42. 42.
    NVIDIA performance primitives (NPP) webpage. https://developer.nvidia.com/npp (2015). Accessed 10 Oct 2015
  43. 43.
    NVIDIA’s GeForce GTX 650 Ti webpage. http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-650ti (2015). Accessed 10 Oct 2015
  44. 44.
    Ramponi, G., Strobel, N.K., Mitra, S.K., Yu, T.-H.: Nonlinear unsharp masking methods for image contrast enhancement. J. Electron. Imaging 5(3), 353–366 (1996)CrossRefGoogle Scholar
  45. 45.
    Munteanu, C., Rosa, A.: Gray-scale image enhancement as an automatic process driven by evolution. IEEE Trans. Syst. Man Cybern. B Cybern. 34(2), 1292–1298 (2004)CrossRefGoogle Scholar
  46. 46.
    Ghimire, D., Lee, J.: Nonlinear transfer function-based local approach for color image enhancement. IEEE Trans. Consum. Electron. 57(2), 858–865 (2011)CrossRefGoogle Scholar
  47. 47.
    Mahajan, S., Singh, A.: Evaluated the performance of integrated PCA & DCT based fusion using consistency verification & non-linear enhancement. Int. J Eng. Sci. Res. Technol. 3(4), 7073–7085 (2014)Google Scholar
  48. 48.
    The experimental results webpage. http://www.ee.tku.edu.tw/~RVLab/_Experiments/GPU_SDRCLCE/ExpResults.htm (2015). Accessed 10 Oct 2015
  49. 49.
    Recovering high dynamic range radiance maps from photographs. http://www.pauldebevec.com/Research/HDR/ (2001). Accessed 10 Oct 2015

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Electrical EngineeringTamkang UniversityNew Taipei CityTaiwan, ROC

Personalised recommendations