Advertisement

Journal of Real-Time Image Processing

, Volume 16, Issue 2, pp 289–304 | Cite as

Park marking-based vehicle self-localization with a fisheye topview system

  • Sebastian HoubenEmail author
  • Marcel Neuhausen
  • Matthias Michael
  • Robert Kesten
  • Florian Mickler
  • Florian Schuller
Original Research Paper

Abstract

Accurately self-localizing a vehicle is of high importance as it allows to robustify nearly all modern driver assistance functionality, e.g., lane keeping and coordinated autonomous driving maneuvers. We examine vehicle self-localization relying only on video sensors, in particular, a system of four fisheye cameras providing a view surrounding the car, a setup currently growing popular in upper-class cars. The presented work aims at an autonomous parking scenario. The method is based on park markings as orientation marks since they can be found in nearly every parking deck and require only little additional preparation. Our contribution is twofold: (1) we present a new real-time capable image processing pipeline for topview systems extracting park markings and show how to obtain a reliable and accurate ego pose and ego motion estimation given a coarse pose as starting point. (2) The aptitude of this often neglected sensor array for vehicle self-localization is demonstrated. Experimental evaluation yields a precision of 0.15 \(\pm\) 0.18 m and 2.01\(^{\circ }\; \pm\) 1.91\(^{\circ }\).

Keywords

Vehicle self-localization Fisheye camera Topview Park marking detection Kalman filter 

References

  1. 1.
    Bojja, J., Kirkko-Jaakkola, M., Collin, J., Takala, J.: Indoor 3d navigation and positioning of vehicles in multi-storey parking garages. In: Proceedings of the international IEEE conference on acoustics, speech and signal processing, pp. 2548–2552 (2013)Google Scholar
  2. 2.
    Chausse, F., Laneurit, J., Chapuis, R.: Vehicle localization on a digital map using particles filtering. In: Proceedings of the IEEE intelligent vehicles symposium, pp. 243–248 (2005)Google Scholar
  3. 3.
    Engel, J., Schöps, T., Cremers, D.: Lsd-slam: large-scale direct monocular SLAM. In: Proceedings of the European conference on computer vision (2014)Google Scholar
  4. 4.
    Fernandez-Madrigal, JA., Cruz-Martin, E., Gonzalez, J., Galindo, C., Blanco, J.L.: Application of uwb and gps technologies for vehicle localization in combined indoor-outdoor environments. In: Proceedings of the 9th international IEEE symposium on signal processing and its applications, pp. 1–4 (2007)Google Scholar
  5. 5.
    Gonzalez, J., Blanco, J., Galindo, C., Ortiz-de Galisteo, A., Fernández-Madrigal, J., Moreno, F., Martinez, J.L.: Combination of uwb and gps for indoor-outdoor vehicle localization. In: Proceedings of the international IEEE symposium on intelligent signal processing, pp. 1–6 (2007)Google Scholar
  6. 6.
    Grewal, M.S., Andrews, A.P.: Kalman Filtering: theory and practice. Prentice-Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  7. 7.
    Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based slam. Intell. Transp. Syst. Mag. 2(4), 31–43 (2010)CrossRefGoogle Scholar
  8. 8.
    Hansen, N.: The cma evolution strategy: a comparing review. Towards a new evolutionary computation, studies in fuzziness and soft computing, vol. 192, pp. 75–102. Springer, Berlin Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Haykin, S.: Kalman Filtering and Neural Networks. Wiley Online Library, New York (2001)CrossRefGoogle Scholar
  10. 10.
    Ibisch, A., Stümper, S., Altinger, H.. Neuhausen, M., Tschentscher, M., Schlipsing, M., Salmen, J., Knolls, A.: Autonomous driving in a parking garage: vehicle-localization and tracking using environment-embedded lidar sensors. In: Proceedings of the IEEE intelligent vehicles symposium, pp. 829–834 (2013)Google Scholar
  11. 11.
    Ibisch, A., Houben, S., Schlipsing, M., Kesten, R., Reimche, P., Schuller, F., Altinger, H.: Towards highly automated driving in a parking garage: general object localization and tracking using an environment-embedded camera system. In: Proceedings of the IEEE intelligent vehicles symposium, pp. 426–431 (2014)Google Scholar
  12. 12.
    Kiwan, H., Bais, A., Morgan, Y.: A new base stations placement approach for enhanced vehicle position estimation in parking lot. In: Proceedings of the 15th international IEEE conference on intelligent transportation systems, pp. 1288–1293 (2012)Google Scholar
  13. 13.
    Kümmerle, R., Triebel, R., Pfaff, P., Burgard, W.: Monte carlo localization in outdoor terrains using multilevel surface maps. J. Field Robot. 25(6–7), 346–359 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kümmerle, R., Hähnel, D., Dolgov, D., Thrun, S., Burgard, W.: Autonomous driving in a multi-level parking structure. In: Proceedings of the international IEEE conference on robotics and automation, pp. 3395–3400 (2009)Google Scholar
  15. 15.
    Lakafosis, V., Vyas, R., Tentzeris, MM.: A localization and position tracking solution utilizing solar-powered rfid tags. In: Proceedings of the fourth IEEE European conference on antennas and propagation, pp. 1–4 (2010)Google Scholar
  16. 16.
    Laneurit, J., Chapuis, R., Chausse, F.: Accurate vehicle positioning on a numerical map. Int. J. Control Autom. Syst. 3(1), 15–31 (2005)zbMATHGoogle Scholar
  17. 17.
    Lategahn, H., Schreiber, M., Ziegler, J., Stiller, C.: Urban localization with camera and inertial measurement unit. In: Proceedings of the IEEE intelligent vehicles symposium, pp. 719–724 (2013)Google Scholar
  18. 18.
    Levinson J, Montemerlo M, Thrun S (2007) Map-based precision vehicle localization in urban environments. In: Robotics: Science and Systems, Citeseer, vol. 4, p. 1Google Scholar
  19. 19.
    Lim, J., Frahm, J.M., Pollefeys, M.: Online environment mapping. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3489–3496 (2011)Google Scholar
  20. 20.
    McCall, J.C., Trivedi, M.M.: Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation. Trans. Intell. Transp. Syst. 7(1), 20–37 (2006)CrossRefGoogle Scholar
  21. 21.
    Oberlander, J., Klemm, S., Essinger, M., Roennau, A., Schamm, T., Zollner, J.M., Dillmann, R.: A semantic approach to sensor-independent vehicle localization. In: Proceedings of the IEEE intelligent vehicles symposium, pp. 1351–1357 (2014)Google Scholar
  22. 22.
    Pink, O.: Visual map matching and localization using a global feature map. In: Computer vision and pattern recognition workshops, pp. 1–7 (2008)Google Scholar
  23. 23.
    Pink, O., Stiller, C.: Automated map generation from aerial images for precise vehicle localization. In: Proceedings of the 13th international IEEE conference on intelligent transportation systems, pp. 1517–1522 (2010)Google Scholar
  24. 24.
    Pink, O., Moosmann, F., Bachmann, A.: Visual features for vehicle localization and ego-motion estimation. In: Proceedings of the IEEE intelligent vehicles symposium, pp. 254–260 (2009)Google Scholar
  25. 25.
    Saab, S.S., Nakad, Z.S.: A standalone rfid indoor positioning system using passive tags. IEEE Trans. Ind. Electron. 58(5), 1961–1970 (2011)CrossRefGoogle Scholar
  26. 26.
    Scaramuzza, D., Martinelli, A., Siegwart, R.: A toolbox for easy calibrating omnidirectional cameras. In: Proceedings of international IEEE conference on intelligent robots and systems, pp. 7–15 (2006) Google Scholar
  27. 27.
    Schindler, A.: Vehicle self-localization with high-precision digital maps. In: Proceedings of the IEEE intelligent vehicles symposium, pp. 141–146 (2013)Google Scholar
  28. 28.
    Schreiber, M., Knöppel, C., Franke, U.: Laneloc: lane marking based localization using highly accurate maps. In: Proceedings of the IEEE intelligent vehicles symposium, pp. 449–454 (2013)Google Scholar
  29. 29.
    Schubert, R., Richter, E., Wanielik, G.: Comparison and evaluation of advanced motion models for vehicle tracking. In: Proceedings of the international conference on information fusion, pp. 1–6 (2008)Google Scholar
  30. 30.
    Thrun, S.: Probabilistic robotics. Communications of the ACM 45(3), 52–57 (2002)CrossRefGoogle Scholar
  31. 31.
    Thrun, S., et al.: Robotic mapping: a survey. Exploring artificial intelligence in the new millennium pp. 1–35 (2002)Google Scholar
  32. 32.
    Veit, T., Tarel, JP., Nicolle, P., Charbonnier, P.: Evaluation of road marking feature extraction. In: Proceedings of IEEE conference on intelligent transportation systems, pp. 174–181 (2008)Google Scholar
  33. 33.
    Wagner, J., Isert, C., Purschwitz, A., Kistner, A.: Improved vehicle positioning for indoor navigation in parking garages through commercially available maps. In: Proceedings of the international IEEE conference on indoor positioning and indoor navigation, pp. 1–8 (2010)Google Scholar
  34. 34.
    Wu, T., Ranganathan, A.: Vehicle localization using road markings. In: Proceedings of the IEEE intelligent vehicles symposium, pp. 1185–1190 (2013)Google Scholar
  35. 35.
    Yenikaya, S., Yenikaya, G., Düven, E.: Keeping the vehicle on the road: a survey on on-road lane detection systems. Comput Surv 46(1):2:1–2:43 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sebastian Houben
    • 1
    Email author
  • Marcel Neuhausen
    • 1
  • Matthias Michael
    • 1
  • Robert Kesten
    • 2
  • Florian Mickler
    • 3
  • Florian Schuller
    • 3
  1. 1.Institut für NeuroinformatikRuhr-Universität BochumBochumGermany
  2. 2.GIGATRONIK IngolstadtGaimersheimGermany
  3. 3.Audi Electronics Venture GmbHGaimersheimGermany

Personalised recommendations