Interactive exploration of a 3D intracranial aneurysm wall model extracted from histologic slices

  • Annika NiemannEmail author
  • Simon Weigand
  • Thomas Hoffmann
  • Martin Skalej
  • Riikka Tulamo
  • Bernhard Preim
  • Sylvia Saalfeld
Original Article



Currently no detailed in vivo imaging of the intracranial vessel wall exists. Ex vivo histologic images can provide information about the intracranial aneurysm (IA) wall composition that is useful for the understanding of IA development and rupture risk. For a 3D analysis, the 2D histologic slices must be incorporated in a 3D model which can be used for a spatial evaluation of the IA’s morphology, including analysis of the IA neck.


In 2D images of histologic slices, different wall layers were manually segmented and a 3D model was generated. The nuclei were automatically detected and classified as round or elongated, and a neural network-based wall type classification was performed. The information was combined in a software prototype visualization providing a unique view of the wall characteristics of an IA and allowing interactive exploration. Furthermore, the heterogeneity (as variance of the wall thickness) of the wall was evaluated.


A 3D model correctly representing the histologic data was reconstructed. The visualization integrating wall information was perceived as useful by a medical expert. The classification produces a plausible result.


The usage of histologic images allows to create a 3D model with new information about the aneurysm wall. The model provides information about the wall thickness, its heterogeneity and, when performed on cadaveric samples, includes information about the transition between IA neck and sac.


Intracranial aneurysms Aneurysm wall Histologic images 



This work is partly funded by the German Research Foundation (SA 3461/2-1) and the Federal Ministry of Education and Research within the Forschungscampus STIMULATE (13GW0095A).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.


  1. 1.
    Juvela S, Porras M, Poussa K (2000) Natural history of unruptured intracranial aneurysms: probability of and risk factors for aneurysm rupture. J Neurosurg 93(3):379–387CrossRefGoogle Scholar
  2. 2.
    Raghavan LM, Baoshun S, Harbaugh R (2005) Quantified aneurysm shape and rupture risk. J Neurosurg 102(2):355–362CrossRefGoogle Scholar
  3. 3.
    Geers AJ, Larrabide I, Radaelli AG, Bogunovic H, Van Andel HAFG, Majoie CB, Frangi AF (2009) Reproducibility of image-based computational hemodynamics in intracranial aneurysms: comparison of CTA and 3DRA. In: IEEE International symposium on biomedical imaging: From Nano to Macro, pp 610–613Google Scholar
  4. 4.
    Berg P, Voß S, Janiga G, Saalfeld S, Bergersen AW, Valen-Sendstad K, Bruening J, Goubergrits L, Spuler A, Chiu TL, Tsang ACO, Copelli G, Csippa B, Paál G, Závodszky G, Detmer FJ, Chung BJ, Cebral JR, Fujimura S, Takao H, Karmonik C, Elias S, Cancelliere NM, Najafi M, Steinman DA, Pereira VM, Piskin S, Finol EA, Pravdivtseva M, Velvaluri P, Rajabzadeh-Oghaz H, Paliwal N, Meng H, Seshadhri S, Venguru S, Shojima M, Sindeev S, Frolov S, Qian Y, Wu Y, Carlson KD, Kallmes DF, Dragomir-Daescu D, Beuing O (2019) Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)–phase II: rupture risk assessment. Int J Comput Assist Radiol Surg 14(10):1795–1804 CrossRefGoogle Scholar
  5. 5.
    Costalat V, Sanchez M, Ambard D, Thines L, Lonjon N, Nicoud F, Brunel H, Lejeune JP, Dufour H, Bouillot P, Lhaldky JP, Kouri K, Segnarbieux F, Maurage CA, Lobotesis K, Villa-Uriol MC, Zhang C, Frangi A, Mercier G, Bonafé A, Sarry L, Jourdan F (2011) Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping. J Biomech 44(15):2685–2691CrossRefGoogle Scholar
  6. 6.
    Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R (1999) Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30(7):1396–1401CrossRefGoogle Scholar
  7. 7.
    Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J, Jääskeläinen J (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35(10):2287–2293CrossRefGoogle Scholar
  8. 8.
    Tulamo R, Frösen J, Hernesniemi J, Niemela M (2010) Inflammatory changes in the aneurysm wall: a review. J NeuroInterventional Surg 2(2):120–130CrossRefGoogle Scholar
  9. 9.
    Marbacher S, Marjamaa J, Bradacova K, von Gunten M, Honkanen P, Abo-Ramadan U, Hernesniemi J, Niemelä M, Frösen J (2014) Loss of mural cells leads to wall degeneration, aneurysm growth, and eventual rupture in a rat aneurysm model. Stroke 45(1):248–254CrossRefGoogle Scholar
  10. 10.
    Chakravarty M, Bertrand G, Hodge CP, Sadikot AF, Collins DL (2006) The creation of a brain atlas for image guided neurosurgery using serial histological data. NeuroImage 30(2):359–376CrossRefGoogle Scholar
  11. 11.
    Krauth A, Blanc R, Poveda A, Jeanmonod D, Morel A, Székely G (2010) A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. NeuroImage 49(3):2053–2062CrossRefGoogle Scholar
  12. 12.
    Can C, Lei W, Lynn S, John C, Michael M, Tilak RJ (2010) Large deformation diffeomorphic metric mapping registration of reconstructed 3D histological section images and in vivo MR images. Front Hum Neurosci 4(43):1–12Google Scholar
  13. 13.
    Glaßer S, Hoffmann T, Boese A, Voß S, Kalinski T, Skalej M, Preim B (2017) Virtual inflation of the cerebral artery wall for the integrated exploration of OCT and histology data. Comput Graph Forum 36(8):57–68CrossRefGoogle Scholar
  14. 14.
    Hafiane A, Bunyak F, Palaniappan K (2008) Fuzzy clustering and active contours for histopathology image segmentation and nuclei detection. Adv Concepts Intell Vis Syst 5259:903–914CrossRefGoogle Scholar
  15. 15.
    Chen H, Qi X, Yu L, Dou Q, Qin J, Heng P (2017) DCAN: deep contour-aware networks for object instance segmentation from histology images. Med Image Anal 36:135–146CrossRefGoogle Scholar
  16. 16.
    Sirinukunwattana K, Raza S, Tsang Y, Snead DRJ, Cree IA, Rajpoot NM (2016) Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 35(5):1196–1206CrossRefGoogle Scholar
  17. 17.
    Weigand S, Saalfeld S, Hoffmann T, Eppler E, Kalinski T, Jachau K, Skalej M (2019) Suitability of intravascular imaging for assessment of cerebrovascular diseases. Neuroradiology. CrossRefPubMedGoogle Scholar
  18. 18.
    Deroulers C, Ameisen D, Badoual M, Gerin C, Granier A, Lartaud M (2013) Analyzing huge pathology images with open source software. Diagn Pathol 8(1):92CrossRefGoogle Scholar
  19. 19.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRefGoogle Scholar
  20. 20.
    Ritter F, Boskamp T, Homeyer A, Laue H, Schwier M, Link F, Peitgen H (2011) Medical image analysis. IEEE Pulse 2(6):60–70CrossRefGoogle Scholar
  21. 21.
    Diederik KP, Ba AJ (2015) A method for stochastic optimization. In: 3rd International conference for learning representations, pp 1–13Google Scholar
  22. 22.
    Robertson AM, Duan X, Aziz KM, Hill MR, Watkins SC, Cebral JR (2015) Diversity in the strength and structure of unruptured cerebral aneurysms. Ann Biomed Eng 43(7):1502–1515CrossRefGoogle Scholar
  23. 23.
    Voß S, Saalfeld S, Hoffmann T, Beuing O, Weigand S, Jachau K, Preim B, Thévenin D, Janiga G, Berg P (2016) Fluid-structure simulations of a ruptured intracranial aneurysm: constant versus patient-specific wall thickness. Comput Math Methods Med 1–8:2016Google Scholar

Copyright information

© CARS 2019

Authors and Affiliations

  1. 1.Faculty of Computer ScienceOtto-von-Guericke University MagdeburgMagdeburgGermany
  2. 2.Ludwig-Maximilians-Universität KlinikumMunichGermany
  3. 3.Research Campus STIMULATEMagdeburgGermany
  4. 4.University Hospital MagdeburgMagdeburgGermany
  5. 5.Helsinki University HospitalUniversity of HelsinkiHelsinkiFinland

Personalised recommendations