Abdominal artery segmentation method from CT volumes using fully convolutional neural network

  • Masahiro OdaEmail author
  • Holger R. Roth
  • Takayuki Kitasaka
  • Kazunari Misawa
  • Michitaka Fujiwara
  • Kensaku Mori
Original Article



The purpose of this paper is to present a fully automated abdominal artery segmentation method from a CT volume. Three-dimensional (3D) blood vessel structure information is important for diagnosis and treatment. Information about blood vessels (including arteries) can be used in patient-specific surgical planning and intra-operative navigation. Since blood vessels have large inter-patient variations in branching patterns and positions, a patient-specific blood vessel segmentation method is necessary. Even though deep learning-based segmentation methods provide good segmentation accuracy among large organs, small organs such as blood vessels are not well segmented. We propose a deep learning-based abdominal artery segmentation method from a CT volume. Because the artery is one of small organs that is difficult to segment, we introduced an original training sample generation method and a three-plane segmentation approach to improve segmentation accuracy.


Our proposed method segments abdominal arteries from an abdominal CT volume with a fully convolutional network (FCN). To segment small arteries, we employ a 2D patch-based segmentation method and an area imbalance reduced training patch generation (AIRTPG) method. AIRTPG adjusts patch number imbalances between patches with artery regions and patches without them. These methods improved the segmentation accuracies of small artery regions. Furthermore, we introduced a three-plane segmentation approach to obtain clear 3D segmentation results from 2D patch-based processes. In the three-plane approach, we performed three segmentation processes using patches generated on axial, coronal, and sagittal planes and combined the results to generate a 3D segmentation result.


The evaluation results of the proposed method using 20 cases of abdominal CT volumes show that the averaged F-measure, precision, and recall rates were 87.1%, 85.8%, and 88.4%, respectively. This result outperformed our previous automated FCN-based segmentation method. Our method offers competitive performance compared to the previous blood vessel segmentation methods from 3D volumes.


We developed an abdominal artery segmentation method using FCN. The 2D patch-based and AIRTPG methods effectively segmented the artery regions. In addition, the three-plane approach generated good 3D segmentation results.


Abdominal artery CT image Segmentation Fully convolutional network 



Parts of this research were supported by MEXT, JSPS KAKENHI Grant Numbers 26108006, 17H00867, JSPS Bilateral International Collaboration Grants, and JST ACT-I (JPMJPR16U9).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study formal consent is not required.


  1. 1.
    Maklad AS, Matsuhiro M, Suzuki H, Kawata Y, Niki N, Shimada M, Iinuma G (2018) Automatic blood vessel based-liver segmentation using the portal phase abdominal CT. Proc SPIE Med Imaging 1057527Google Scholar
  2. 2.
    Okada T, Linguraru MG, Hori M, Summers RM, Tomiyama N, Sato Y (2013) Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors. Med Image Comput Comput Assist Interv (MICCAI) 8151:275–282Google Scholar
  3. 3.
    Nezhat C, Childers J, Nezhat F, Nezhat CH, Seidman DS (1997) Major retroperitoneal vascular injury during laparoscopic surgery. Hum Reprod 12(3):480–483CrossRefGoogle Scholar
  4. 4.
    Amir-Khalili A, Peyrat JM, Abinahed J, Al-Alao O, Al-Ansari A, Hamarneh G, Abugharbieh R (2014) Auto localization and segmentation of occluded vessels in robot-assisted partial nephrectomy. Med Image Comput Comput Assist Interv (MICCAI) 8673:407–414Google Scholar
  5. 5.
    Hayashi Y, Misawa K, Oda M, Hawkes DJ, Mori K (2016) Clinical application of a surgical navigation system based on virtual laparoscopy in laparoscopic gastrectomy for gastric cancer. Int J Comput Assist Radiol Surg 11(5):827–836CrossRefGoogle Scholar
  6. 6.
    Ieiri S, Uemura M, Konishi K, Souzaki R, Nagao Y, Tsutsumi N, Akahoshi T, Ohuchida K, Ohdaira T, Tomikawa M, Tanoue K, Hashizumie M, Taguchi T (2012) Augmented reality navigation system for laparoscopic splenectomy in children based on preoperative CT image using optical tracking device. Pediatr Surg Int 28(4):341–346CrossRefGoogle Scholar
  7. 7.
    Lee SW, Shinohara H, Matsuki M, Okuda J, Nomura E, Mabuchi H, Nishiguchi K, Takaori K, Narabayashi I, Tanigawa N (2003) Preoperative simulation of vascular anatomy by three-dimensional computed tomography imaging in laparoscopic gastric cancer surgery. J Am Coll Surg 197(6):927–936CrossRefGoogle Scholar
  8. 8.
    Roth HR, Oda M, Shimizu N, Oda H, Hayashi Y, Kitasaka T, Fujiwara M, Misawa K, Mori K (2018) Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional network. Proc SPIE Med Imaging 10574:105740B-1–105740B-6Google Scholar
  9. 9.
    Roth HR, Oda H, Zhou X, Shimizu N, Yang Y, Hayashi Y, Oda M, Fujiwara M, Misawa K, Mori K (2018) An application of cascaded 3D fully convolutional networks for medical image segmentation. Comput Med Imaging Graph 66:90–99CrossRefGoogle Scholar
  10. 10.
    Zhou X, Takayama R, Wang S, Hara T, Fujita H (2017) Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys 44(10):5221–5233CrossRefGoogle Scholar
  11. 11.
    Fu H, Xu Y, Lin S, Wong DWK, Liu J (2016) Deep vessel: retinal vessel segmentation via deep learning and conditional random field. Med Image Comput Comput Assist Interv (MICCAI) 9901:132–139Google Scholar
  12. 12.
    Fu A, Xu Z, Gao M, Buty M, Mollura DJ (2016) Deep vessel tracking: A generalized probabilistic approach via deep learning. In: IEEE 13th international symposium on biomedical imaging (ISBI)Google Scholar
  13. 13.
    Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380CrossRefGoogle Scholar
  14. 14.
    Prentas̆ic P, Heisler M, Mammo Z, Lee S, Merkur A, Navajas E, Beg MF, S̆arunic M, Loncaric S, (2016) Segmentation of the foveal microvasculature using deep learning networks. Med Image Comput Comput Assist Interv (MICCAI) 9901:132–139Google Scholar
  15. 15.
    Dasgupta A, Singh S (2017) A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. IEEE 14th international symposium on biomedical imaging (ISBI)Google Scholar
  16. 16.
    Zhang Y, Chung ACS (2018) Deep supervision with additional labels for retinal vessel segmentation task. Med Image Comput Comput Assist Interv (MICCAI) 11071:83–91Google Scholar
  17. 17.
    Wu Y, Xia Y, Song Y, Zhang Y, Cai W (2018) Multiscale network followed network model for retinal vessel segmentation. Med Image Comput Comput Assist Interv (MICCAI) 11071:119–126Google Scholar
  18. 18.
    Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13:819–845CrossRefGoogle Scholar
  19. 19.
    Moccia S, Momi ED, Hadji SE, Mattos LS (2018) Blood vessel segmentation algorithms—review of methods, datasets and evaluation metrics. Comput Methods Programs Biomed 158:71–91CrossRefGoogle Scholar
  20. 20.
    Wörz S, Rohr K (2007) Segmentation and quantification of human vessels using a 3-D cylindrical intensity model. IEEE Trans Image Process 16(8):1994–2004CrossRefGoogle Scholar
  21. 21.
    Goyal A, Jack L, Lamata P, Wijngaard J, Horssen P, Spaan J, Siebes M, Grau V, Smith NP (2013) Model-based vasculature extraction from optical fluorescence cryomicrotome images. IEEE Trans Med Imaging 32(1):56–72CrossRefGoogle Scholar
  22. 22.
    Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. Med Image Comput Comput Assist Interv (MICCAI) 1496:130–137Google Scholar
  23. 23.
    Oda M, Yamamoto T, Yoshino Y, Mori K (2016) Segmentation method of abdominal arteries from CT volumes utilizing intensity transition along arteries. Int J Comput Assist Radiol Surg 11(1):S46–S47Google Scholar
  24. 24.
    Cherry KM, Peplinski B, Kim L, Wang S, Lu L, Zhang W, Liu J, Wei Z, Summers RM (2015) Sequential Monte Carlo tracking of the marginal artery by multiple cue fusion and random forest regression. Med Image Anal 19(1):164–175CrossRefGoogle Scholar
  25. 25.
    Chen L, Xie Y, Sun J, Balu N, Mossa-Basha M, Pimentel K, Hatsukami TS, Hwang J-N, Yuan C (2017) Y-net: 3D intracranial artery segmentation using a convolutional autoencoder. arXiv:1712.07194
  26. 26.
    Tetteh G, Efremov V, Forkert ND, Schneider M, Kirschke J, Weber B, Zimmer C, Piraud M, Menze BH (2018) DeepVesselNet: vessel segmentation, centerline prediction, and bifurcation detection in 3-D angiographic volumes. arXiv:1803.09340v2
  27. 27.
    Nardelli P, Jimenez-Carretero D, Bermejo-Pelaez D, Washko GR, Rahaghi FN, Ledesma-Carbayo MJ, Estépar RSJ (2018) Pulmonary artery-vein classification in CT images using deep learning. IEEE Trans Med Imaging 37(11):2428–2440CrossRefGoogle Scholar
  28. 28.
    Kitrungrotsakul T, Han X-H, Iwamoto Y, Foruzan AH, Lin L, Chen W-Y (2017) Robust hepatic vessel segmentation using multi deep convolution network. Proc SPIE Med Imaging 1013711Google Scholar
  29. 29.
    Kitrungrotsakul T, Han X-H, Wei X, Chen W-Y (2018) Multi-pathways CNN for robust vascular segmentation. Proc SPIE Med Imaging 105781SGoogle Scholar
  30. 30.
    Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-net: learning dense volumetric segmentation from sparse annotation. MedMed Image Comput Comput Assist Interv (MICCAI) 9901:424–432Google Scholar
  31. 31.
    Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Med Image Comput Comput Assist Interv (MICCAI) 9351:234–241Google Scholar
  32. 32.
    Milletari F, Navab N, Ahmadi SA (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: Fourth international conference on 3D Vision (3DV), pp 565–571Google Scholar
  33. 33.
    Sudre CH, Li W, Vercauteren T, Ourselin S, Cardoso MJ (2017) Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. Int Workshop Deep Learn Med Image Anal (DLMIA) 10553:240–248Google Scholar
  34. 34.
    Oda M, Kitasaka T, Misawa K, Fujiwara M, Mori K (2018) Abdominal artery segmentation from CT volumes using fully convolutional network for small artery segmentation. Int J Comput Assist Radiol Surg 13(1):S20–21Google Scholar
  35. 35.
    Diederik PK, Jimmy B (2014) Adam: a method for stochastic optimization. arXiv:1412.6980
  36. 36.
    Jin D, Xu Z, Harrison AP, George K, Mollura DJ (2017) 3D convolutional neural networks with graph refinement for airway segmentation using incomplete data labels. Mach Learn Med Imaging (MLMI) 10541:141–149CrossRefGoogle Scholar
  37. 37.
    Jang Y, Hong Y, Ha S, Kim S, Chang HJ (2018) Automatic segmentation of LV and RV in cardiac MRI. Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges, STACOM 10663:161–169Google Scholar
  38. 38.
    Patravali J, Jain S, Chilamkurthy S (2018) 2D–3D fully convolutional neural networks for cardiac MR segmentation. Statistical atlases and computational models of the heart, ACDC and MMWHS challenges, STACOM 2017 10663:130–139Google Scholar
  39. 39.
    Kurmann T (2017) Simultaneous recognition and pose estimation of instruments in minimally invasive surgery. Med Image Comput Comput Assist Interv (MICCAI) 10434:505–513Google Scholar
  40. 40.
    Zhang Z, Liu Q, Wang Y (2018) Road extraction by deep residual U-Net. IEEE Geosci Rem Sens Lett 15(5):749–753 CrossRefGoogle Scholar

Copyright information

© CARS 2019

Authors and Affiliations

  • Masahiro Oda
    • 1
    Email author
  • Holger R. Roth
    • 1
  • Takayuki Kitasaka
    • 2
  • Kazunari Misawa
    • 3
  • Michitaka Fujiwara
    • 4
  • Kensaku Mori
    • 1
    • 5
  1. 1.Graduate School of InformaticsNagoya UniversityNagoyaJapan
  2. 2.School of Information ScienceAichi Institute of TechnologyToyotaJapan
  3. 3.Aichi Cancer Center HospitalNagoyaJapan
  4. 4.Nagoya University Graduate School of MedicineNagoyaJapan
  5. 5.Research Center for Medical BigdataNational Institute of InformaticsTokyoJapan

Personalised recommendations