Advertisement

Robotic surgical rehearsal on patient-specific 3D-printed skull models for stereoelectroencephalography (SEEG)

  • Divaldo CamaraEmail author
  • Fedor Panov
  • Holly Oemke
  • Saadi Ghatan
  • Anthony Costa
Original Article
  • 60 Downloads

Abstract

Purpose

Medically refractory epilepsy patients commonly require surgical alternatives for diagnosis and treatment. Stereoelectroencephalography (SEEG) is a useful diagnostic procedure in seizure focus elucidation. Modern techniques involve the use of robotics and neuronavigation for SEEG. A steep learning curve combined with multiple complex technologies employed during the case makes this procedure a perfect candidate for surgical rehearsal. This paper tests the feasibility of the use of patient-specific 3D-printed model for surgical rehearsal of robotic SEEG.

Methods

A 3D-printed model was created using the patient’s cranial computed tomography and computed tomography angiography radiological imaging. A rehearsal in an operating room (OR) prior to the actual procedure date was used for surgical planning of SEEG electrodes, education of the residents and fellows as well as training of the support staff. Attention was paid to assure precise recreation of the surgical procedure.

Results

The patient-specific 3D-printed model tolerated each step of the procedure from facial registration, to drilling, bolt insertion and lead placement. Accuracy of the designed trajectory to the electrode final position was visually confirmed at the end of procedure. Important modification to the plan of eventual surgery improved the efficiency of the real operation.

Conclusion

For surgical planning, education and training purposes in robotic SEEG, 3D-printed models may be utilized as a realistic anatomy tool. Potential applications of this technique include trajectory feasibility evaluation, patient positioning optimization, increasing OR efficiency, as well as neurosurgical education and patient counseling.

Keywords

3D model SEEG Epilepsy Robotic surgery 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

References

  1. 1.
    Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR (2010) Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia 51(5):883–890.  https://doi.org/10.1111/j.1528-1167.2009.02481.x CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342(5):314–319.  https://doi.org/10.1056/NEJM200002033420503 CrossRefGoogle Scholar
  3. 3.
    Gonzalez-Martinez J, Bulacio J, Thompson S, Gale J, Smithason S, Najm I, Bingaman W (2016) Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery 78(2):169–180.  https://doi.org/10.1227/NEU.0000000000001034 CrossRefGoogle Scholar
  4. 4.
    Randazzo M, Pisapia JM, Singh N, Thawani JP (2016) 3D printing in neurosurgery: a systematic review. Surg Neurol Int 7(Suppl 33):S801–S809.  https://doi.org/10.4103/2152-7806.194059 PubMedCentralGoogle Scholar
  5. 5.
    Mao K, Wang Y, Xiao S, Liu Z, Zhang Y, Zhang X, Wang Z, Lu N, Shourong Z, Xifeng Z, Geng C, Baowei L (2010) Clinical application of computer-designed polystyrene models in complex severe spinal deformities: a pilot study. Eur Spine J 19(5):797–802.  https://doi.org/10.1007/s00586-010-1359-0 CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Namba K, Higaki A, Kaneko N, Mashiko T, Nemoto S, Watanabe E (2015) Microcatheter shaping for intracranial aneurysm coiling using the 3-dimensional printing rapid prototyping technology: preliminary result in the first 10 consecutive cases. World Neurosurg 84(1):178–186.  https://doi.org/10.1016/j.wneu.2015.03.006 CrossRefGoogle Scholar
  7. 7.
    Muelleman TJ, Peterson J, Chowdhury NI, Gorup J, Camarata P, Lin J (2016) Individualized surgical approach planning for petroclival tumors using a 3D printer. J Neurol Surg B Skull Base 77(3):243–248.  https://doi.org/10.1055/s-0035-1566253 CrossRefGoogle Scholar
  8. 8.
    Pacione D, Tanweer O, Berman P, Harter DH (2016) The utility of a multimaterial 3D printed model for surgical planning of complex deformity of the skull base and carniovertebral junction. J Neurosurg 125(5):1194–1197.  https://doi.org/10.3171/2015.12.JNS151936 CrossRefGoogle Scholar
  9. 9.
    Klein A, Ghosh SS, Avants B, Yeo BT, Fischl B, Ardekani B, Gee JC, Mann JJ, Parsey RV (2010) Evaluation of volume-based and surface-based brain image registration methods. Neuroimage 51(1):214–220.  https://doi.org/10.1016/j.neuroimage.2010.01.091 CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Seg3D2 v. 2.4.0 C Seg3D: volumetric image segmentation and visualization. Scientific Computing and Imaging Institute (SCI). http://www.seg3d.org
  11. 11.
    Taubin G (1995) Curve and surface smoothing without shrinkage. In: Proceedings of IEEE international conference on computer visionGoogle Scholar
  12. 12.
    Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Wells WM, Colchester A, Delp S (eds) Medical image computing and computer-assisted intervention—MICCAI’98. MICCAI 1998. Lecture Notes in Computer Science, vol 1496. Springer, BerlinGoogle Scholar
  13. 13.
    Antiga L, Steinman DA (2008) The vascular modeling toolkit. http://www.vmtk.org/
  14. 14.
    Hayne R, Meyers R, Knott JR (1949) Characteristics of electrical activity of human corpus striatum and neighboring structures. J Neurophysiol 12(3):185–195CrossRefGoogle Scholar
  15. 15.
    Reif PS, Strzelczyk A, Rosenow F (2016) The history of invasive EEG evaluation in epilepsy patients. Seizure 41:191–195.  https://doi.org/10.1016/j.seizure.2016.04.006 CrossRefGoogle Scholar
  16. 16.
    Sutherland GR, Maddahi Y, Gan LS, Lama S, Zareinia K (2015) Robotics in the neurosurgical treatment of glioma. Surg Neurol Int 6(Suppl 1):S1–8.  https://doi.org/10.4103/2152-7806.151321 CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Cardinale F, Casaceli G, Raneri F, Miller J, Lo Russo G (2016) Implantation of stereoelectroencephalography electrodes: a systematic review. J Clin Neurophysiol 33(6):490–502.  https://doi.org/10.1097/WNP.0000000000000249 CrossRefGoogle Scholar
  18. 18.
    D’Urso PS, Thompson RG, Atkinson RL, Weidmann MJ, Redmond MJ, Hall BI, Jeavons SJ, Benson MD, Earwaker WJS (1999) Cerebrovascular biomodelling: a technical note. Surg Neurol 52:490–500CrossRefGoogle Scholar
  19. 19.
    Wurm G, Tomancok B, Pogady P, Holl K, Trenkler J (2004) Cerebrovascular stereolithographic biomodeling for aneurysm surgery. J Neurosurg 100:139–145CrossRefGoogle Scholar
  20. 20.
    Muller A, Krishnan KG, Uhl E, Mast G (2003) The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg 14(6):899–914CrossRefGoogle Scholar
  21. 21.
    Narayanan V, Narayanan P, Rajagopalan R, Karuppiah R, Rahman ZAA, Wormald P-J, Hasselt CAV, Waran V (2015) Endoscopic skull base training using 3D printed models with pre-existing pathology. Eur Arch Otorhinolaryngol 272:753–757.  https://doi.org/10.1007/s00405-014-3300-3) CrossRefGoogle Scholar
  22. 22.
    Kondo K, Harada N, Masuda H, Sugo N, Terazono S, Okonogi S, Sakaeyama Y, Fuchinoue Y, Ando S, Fukushima D, Nomoto J, Nemoto M (2016) A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures. Acta Neurochir (Wien) 158(6):1213–1219.  https://doi.org/10.1007/s00701-016-2781-9 CrossRefGoogle Scholar
  23. 23.
    Izatt MT, Thorpe PL, Thompson RG, D’Urso PS, Adam CJ, Earwaker JW, Labrom RD, Askin GN (2007) The use of physical biomodelling in complex spinal surgery. Eur Spine J 16(9):1507–1518.  https://doi.org/10.1007/s00586-006-0289-3 CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE III, Phan K (2017) The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine 1:1–10.  https://doi.org/10.3171/2016.9.spine16371 Google Scholar
  25. 25.
    Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341.  https://doi.org/10.1007/s11548-010-0476-x CrossRefGoogle Scholar
  26. 26.
    Morris S, Hirata M, Sugata H, Goto T, Matsushita K, Yanagisawa T, Saitoh Y, Kishima H, Yoshimine T (2015) Patient-specific cortical electrodes for sulcal and gyral implantation. IEEE Trans Biomed Eng 62(4):1034–1041.  https://doi.org/10.1109/TBME.2014.2329812 CrossRefGoogle Scholar
  27. 27.
    Balanescu B, Franklin R, Ciurea J, Mindruta I, Rasina A, Bobulescu RC, Donos C, Barborica A (2014) A personalized stereotactic fixture for implantation of depth electrodes in stereoelectroencephalography. Stereotact Funct Neurosurg 92(2):117–125.  https://doi.org/10.1159/000360226 CrossRefGoogle Scholar
  28. 28.
    Pritchard D, Petrilla A, Hallinan S, Taylor DH Jr, Schabert VF, Dubois RW (2016) What contributes most to high health care costs? Health care spending in high resource patients. J Manag Care Spec Pharm 22(2):102–109.  https://doi.org/10.18553/jmcp.2016.22.2.102 Google Scholar
  29. 29.
    Ronald D, Shippert M (2016) A study of time-dependent operating room fees and how to save $100,000 by using time-saving products. Am J Cosmet Surg 22(1):25–34Google Scholar
  30. 30.
    Waran V, Narayanan V, Karuppiah R, Owen SL, Aziz T (2014) Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J Neurosurg 120(2):489–492.  https://doi.org/10.3171/2013.11.JNS131066 CrossRefGoogle Scholar
  31. 31.
    Liew Y, Beveridge E, Demetriades AK, Hughes MA (2015) 3D printing of patient-specific anatomy: A tool to improve patient consent and enhance imaging interpretation by trainees. Br J Neurosurg 29(5):712–714.  https://doi.org/10.3109/02688697.2015.1026799 CrossRefGoogle Scholar

Copyright information

© CARS 2018

Authors and Affiliations

  1. 1.Department of NeurosurgeryIchan School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations