Advertisement

Volumetric analysis of intracranial vessels: a novel tool for evaluation of cerebral vasospasm

  • Axel Neulen
  • Tobias Pantel
  • Anna Dieter
  • Michael Kosterhon
  • Manfred Berres
  • Serge C. Thal
  • Marc A. Brockmann
  • Sven R. Kantelhardt
Original Article
  • 53 Downloads

Abstract

Purpose

Together with other diagnostic modalities, computed tomography angiography (CTA) is commonly used to indicate endovascular vasospasm treatment after subarachnoid hemorrhage (SAH), despite the fact that objective, user-independent parameters for evaluation of CTA are lacking. This exploratory study was designed to investigate whether quantification of vasospasm by automated volumetric analysis of the middle cerebral artery M1 segment from CTA data could be used as an objective parameter to indicate endovascular vasospasm treatment.

Methods

We retrospectively identified SAH patients who underwent transcranial Doppler sonography (TCD), CTA, and CT perfusion (CTP), with or without subsequent endovascular treatment. We determined vessel volume/vessel length of the M1 segments from CTA data and used receiver operating characteristic curve analysis to determine the optimal threshold of vessel volume to predict vasospasm requiring endovascular treatment. In addition, blinded investigators independently analyzed TCD, CTA, and CTP data.

Results

Of 45 CTA examinations with corresponding CTP and TCD examinations (24 SAH patients), nine indicated the need for endovascular vasospasm treatment during examination. In our patients, vessel volume < 5.8 µL/mm was moderately sensitive but fairly specific to detect vasospasm requiring endovascular treatment (sensitivity, 67%; specificity, 78%; negative predictive value (NPV), 89%; positive predictive value (PPV), 46%). For CTA, CTP, and TCD, we found NPVs of 96%, 92%, and 89%, PPVs of 40%, 35%, and 35%, sensitivities of 89%, 78%, and 67%, and specificities of 67%, 64%, and 69%, respectively.

Conclusion

Vessel volumes could provide a new objective parameter for the interpretation of CTA data and could thereby improve multimodal assessment of vasospasm in SAH patients.

Keywords

Delayed cerebral ischemia Posthemorrhagic cerebral vasospasm Subarachnoid hemorrhage Transcranial Doppler sonography Computed tomography angiography Computed tomography perfusion imaging 

Notes

Acknowledgements

Parts of this study are part of the doctoral thesis of T. Pantel, presented to the Medical Faculty of the Johannes Gutenberg University of Mainz. The study was supported by a grant of the Medical Center of the Johannes Gutenberg University Mainz (Stufe I Foerderung, grant to A.N.). The funder had no role in the design or conduct of this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Linn FH, Rinkel GJ, Algra A, van Gijn J (1996) Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis. Stroke 27(4):625–629CrossRefPubMedGoogle Scholar
  2. 2.
    Vergouwen MD, Vermeulen M, van Gijn J, Rinkel GJ, Wijdicks EF, Muizelaar JP, Mendelow AD, Juvela S, Yonas H, Terbrugge KG, Macdonald RL, Diringer MN, Broderick JP, Dreier JP, Roos YB (2010) Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke 41(10):2391–2395.  https://doi.org/10.1161/STROKEAHA.110.589275 CrossRefPubMedGoogle Scholar
  3. 3.
    Francoeur CL, Mayer SA (2016) Management of delayed cerebral ischemia after subarachnoid hemorrhage. Crit Care 20(1):277.  https://doi.org/10.1186/s13054-016-1447-6 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Macdonald RL (2014) Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 10(1):44–58.  https://doi.org/10.1038/nrneurol.2013.246 CrossRefPubMedGoogle Scholar
  5. 5.
    Dorsch N (2011) A clinical review of cerebral vasospasm and delayed ischaemia following aneurysm rupture. Acta Neurochir Suppl 110(Pt 1):5–6.  https://doi.org/10.1007/978-3-7091-0353-1_1 PubMedCrossRefGoogle Scholar
  6. 6.
    Diringer MN, Bleck TP, Claude Hemphill J 3rd, Menon D, Shutter L, Vespa P, Bruder N, Connolly ES Jr, Citerio G, Gress D, Hanggi D, Hoh BL, Lanzino G, Le Roux P, Rabinstein A, Schmutzhard E, Stocchetti N, Suarez JI, Treggiari M, Tseng MY, Vergouwen MD, Wolf S, Zipfel G, Neurocritical Care S (2011) Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care 15(2):211–240.  https://doi.org/10.1007/s12028-011-9605-9 CrossRefPubMedGoogle Scholar
  7. 7.
    Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, Hoh BL, Kirkness CJ, Naidech AM, Ogilvy CS, Patel AB, Thompson BG, Vespa P, American Heart Association Stroke Council, Council on Cardiovascular Radiology and Intervention, Council on Cardiovascular Nursing, Council on Cardiovascular Surgery and Anesthesia, Council on Clinical Cardiology (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke 43(6):1711–1737.  https://doi.org/10.1161/STR.0b013e3182587839 CrossRefPubMedGoogle Scholar
  8. 8.
    Steiner T, Juvela S, Unterberg A, Jung C, Forsting M, Rinkel G, European Stroke O (2013) European Stroke Organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc Dis 35(2):93–112.  https://doi.org/10.1159/000346087 CrossRefPubMedGoogle Scholar
  9. 9.
    Westermaier T, Pham M, Stetter C, Willner N, Solymosi L, Ernestus RI, Vince GH, Kunze E (2014) Value of transcranial Doppler, perfusion-CT and neurological evaluation to forecast secondary ischemia after aneurysmal SAH. Neurocrit Care 20(3):406–412.  https://doi.org/10.1007/s12028-013-9896-0 CrossRefPubMedGoogle Scholar
  10. 10.
    Lysakowski C, Walder B, Costanza MC, Tramer MR (2001) Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review. Stroke 32(10):2292–2298CrossRefPubMedGoogle Scholar
  11. 11.
    Chaudhary SR, Ko N, Dillon WP, Yu MB, Liu S, Criqui GI, Higashida RT, Smith WS, Wintermark M (2008) Prospective evaluation of multidetector-row CT angiography for the diagnosis of vasospasm following subarachnoid hemorrhage: a comparison with digital subtraction angiography. Cerebrovasc Dis 25(1–2):144–150.  https://doi.org/10.1159/000112325 CrossRefPubMedGoogle Scholar
  12. 12.
    Otawara Y, Ogasawara K, Ogawa A, Sasaki M, Takahashi K (2002) Evaluation of vasospasm after subarachnoid hemorrhage by use of multislice computed tomographic angiography. Neurosurgery 51(4):939–942 (discussion 942–933) PubMedGoogle Scholar
  13. 13.
    Wintermark M, Ko NU, Smith WS, Liu S, Higashida RT, Dillon WP (2006) Vasospasm after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on diagnosis and management. AJNR Am J Neuroradiol 27(1):26–34PubMedGoogle Scholar
  14. 14.
    Huang AP, Tsai JC, Kuo LT, Lee CW, Lai HS, Tsai LK, Huang SJ, Chen CM, Chen YS, Chuang HY, Wintermark M (2014) Clinical application of perfusion computed tomography in neurosurgery. J Neurosurg 120(2):473–488.  https://doi.org/10.3171/2013.10.JNS13103 CrossRefPubMedGoogle Scholar
  15. 15.
    Neulen A, Pantel T, Kosterhon M, Kirschner S, Brockmann MA, Kantelhardt SR, Giese A, Thal SC (2017) A segmentation-based volumetric approach to localize and quantify cerebral vasospasm based on tomographic imaging data. PLoS ONE 12(2):e0172010.  https://doi.org/10.1371/journal.pone.0172010 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, von Kummer R (1996) ‘Malignant’ middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol 53(4):309–315CrossRefPubMedGoogle Scholar
  17. 17.
    Neulen A, Greke C, Prokesch E, Konig J, Wertheimer D, Giese A (2013) Image guidance to improve reliability and data integrity of transcranial Doppler sonography. Clin Neurol Neurosurg 115(8):1382–1388.  https://doi.org/10.1016/j.clineuro.2012.12.025 CrossRefPubMedGoogle Scholar
  18. 18.
    Greke C, Neulen A, Kantelhardt SR, Birkenmayer A, Vollmer FC, Thiemann I, Giese A (2013) Image-guided transcranial Doppler sonography for monitoring of defined segments of intracranial arteries. J Neurosurg Anesthesiol 25(1):55–61.  https://doi.org/10.1097/ANA.0b013e31826b3d55 CrossRefPubMedGoogle Scholar
  19. 19.
    Neulen A, Prokesch E, Stein M, Konig J, Giese A (2016) Image-guided transcranial Doppler sonography for monitoring of vasospasm after subarachnoid hemorrhage. Clin Neurol Neurosurg 145:14–18.  https://doi.org/10.1016/j.clineuro.2016.03.012 CrossRefPubMedGoogle Scholar
  20. 20.
    Teasdale GM, Drake CG, Hunt W, Kassell N, Sano K, Pertuiset B, De Villiers JC (1988) A universal subarachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. J Neurol Neurosurg Psychiatry 51(11):1457CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fisher CM, Kistler JP, Davis JM (1980) Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 6(1):1–9CrossRefPubMedGoogle Scholar
  22. 22.
    Neulen A, Kosterhon M, Pantel T, Kirschner S, Goetz H, Brockmann MA, Kantelhardt SR, Thal SC (2018) A volumetric method for quantification of cerebral vasospasm in a murine model of subarachnoid hemorrhage. J Vis Exp (Pending Publication) e57997 (In-press).  https://doi.org/10.3791/57997
  23. 23.
    Wintermark M, Dillon WP, Smith WS, Lau BC, Chaudhary S, Liu S, Yu M, Fitch M, Chien JD, Higashida RT, Ko NU (2008) Visual grading system for vasospasm based on perfusion CT imaging: comparisons with conventional angiography and quantitative perfusion CT. Cerebrovasc Dis 26(2):163–170.  https://doi.org/10.1159/000139664 CrossRefPubMedGoogle Scholar
  24. 24.
    Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35CrossRefPubMedGoogle Scholar
  25. 25.
    Pickard JD, Murray GD, Illingworth R, Shaw MD, Teasdale GM, Foy PM, Humphrey PR, Lang DA, Nelson R, Richards P (1989) Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ 298(6674):636–642CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kirkpatrick PJ, Turner CL, Smith C, Hutchinson PJ, Murray GD, Collaborators S (2014) Simvastatin in aneurysmal subarachnoid haemorrhage (STASH): a multicentre randomised phase 3 trial. Lancet Neurol 13(7):666–675.  https://doi.org/10.1016/S1474-4422(14)70084-5 CrossRefPubMedGoogle Scholar
  27. 27.
    Dorhout Mees SM, Algra A, Vandertop WP, van Kooten F, Kuijsten HA, Boiten J, van Oostenbrugge RJ, Al-Shahi Salman R, Lavados PM, Rinkel GJ, van den Bergh WM, Group M-S (2012) Magnesium for aneurysmal subarachnoid haemorrhage (MASH-2): a randomised placebo-controlled trial. Lancet 380(9836):44–49.  https://doi.org/10.1016/s0140-6736(12)60724-7 CrossRefPubMedGoogle Scholar
  28. 28.
    Zubkov YN, Nikiforov BM, Shustin VA (1984) Balloon catheter technique for dilatation of constricted cerebral arteries after aneurysmal SAH. Acta Neurochir 70(1–2):65–79CrossRefPubMedGoogle Scholar
  29. 29.
    Brothers MF, Holgate RC (1990) Intracranial angioplasty for treatment of vasospasm after subarachnoid hemorrhage: technique and modifications to improve branch access. AJNR Am J Neuroradiol 11(2):239–247PubMedGoogle Scholar
  30. 30.
    Higashida RT, Halbach VV, Dowd CF, Dormandy B, Bell J, Hieshima GB (1992) Intravascular balloon dilatation therapy for intracranial arterial vasospasm: patient selection, technique, and clinical results. Neurosurg Rev 15(2):89–95CrossRefPubMedGoogle Scholar
  31. 31.
    Aburto-Murrieta Y, Marquez-Romero JM, Bonifacio-Delgadillo D, Lopez I, Hernandez-Curiel B (2012) Endovascular treatment: balloon angioplasty versus nimodipine intra-arterial for medically refractory cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Vasc Endovasc Surg 46(6):460–465.  https://doi.org/10.1177/1538574412454585 CrossRefGoogle Scholar
  32. 32.
    Hoh BL, Ogilvy CS (2005) Endovascular treatment of cerebral vasospasm: transluminal balloon angioplasty, intra-arterial papaverine, and intra-arterial nicardipine. Neurosurg Clin N Am 16(3):501–516, vi.  https://doi.org/10.1016/j.nec.2005.04.004 CrossRefPubMedGoogle Scholar
  33. 33.
    Biondi A, Ricciardi GK, Puybasset L, Abdennour L, Longo M, Chiras J, Van Effenterre R (2004) Intra-arterial nimodipine for the treatment of symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage: preliminary results. AJNR Am J Neuroradiol 25(6):1067–1076PubMedGoogle Scholar
  34. 34.
    Turowski B, Schramm P (2015) An appeal to standardize CT- and MR-perfusion. Clin Neuroradiol 25(Suppl 2):205–210.  https://doi.org/10.1007/s00062-015-0444-5 CrossRefPubMedGoogle Scholar

Copyright information

© CARS 2018

Authors and Affiliations

  • Axel Neulen
    • 1
  • Tobias Pantel
    • 1
  • Anna Dieter
    • 2
  • Michael Kosterhon
    • 1
  • Manfred Berres
    • 4
    • 5
  • Serge C. Thal
    • 3
  • Marc A. Brockmann
    • 2
  • Sven R. Kantelhardt
    • 1
  1. 1.Department of NeurosurgeryUniversity Medical Center of MainzMainzGermany
  2. 2.Department of NeuroradiologyUniversity Medical Center of MainzMainzGermany
  3. 3.Department of AnesthesiologyUniversity Medical Center of MainzMainzGermany
  4. 4.Institute of Medical Biometry, Epidemiology and InformaticsUniversity Medical Center of MainzMainzGermany
  5. 5.Department of Mathematics and TechnologyUniversity of Applied Sciences KoblenzRemagenGermany

Personalised recommendations