Advertisement

Model checking for trigger loss detection during Doppler ultrasound-guided fetal cardiovascular MRI

  • Sven-Thomas Antoni
  • Sascha Lehmann
  • Maximilian Neidhardt
  • Kai Fehrs
  • Christian Ruprecht
  • Fabian Kording
  • Gerhard Adam
  • Sibylle Schupp
  • Alexander Schlaefer
Review Article
  • 42 Downloads

Abstract

Purpose

Ultrasound (US) is the state of the art in prenatal diagnosis to depict fetal heart diseases. Cardiovascular magnetic resonance imaging (CMRI) has been proposed as a complementary diagnostic tool. Currently, only trigger-based methods allow the temporal and spatial resolutions necessary to depict the heart over time. Of these methods, only Doppler US (DUS)-based triggering is usable with higher field strengths. DUS is sensitive to motion. This may lead to signal and, ultimately, trigger loss. If too many triggers are lost, the image acquisition is stopped, resulting in a failed imaging sequence. Moreover, losing triggers may prolong image acquisition. Hence, if no actual trigger can be found, injected triggers are added to the signal based on the trigger history.

Method

We use model checking, a technique originating from the computer science domain that formally checks if a model satisfies given requirements, to simultaneously model heart and respiratory motion and to decide whether respiration has a prominent effect on the signal. Using bounds on the physiological parameters and their variability, the method detects when changes in the signal are due to respiration. We use this to decide when to inject a trigger.

Results

In a real-world scenario, we can reduce the number of falsely injected triggers by 94% from more than 87% to less than 5%. On a subset of motion that would allow CMRI, the number can be further reduced to below 0.2%. In a study using simulations with a robot, we show that our method works for different types of motions, motion ranges, starting positions and heartbeat traces.

Conclusion

While DUS is a promising approach for fetal CMRI, correct trigger injection is critical. Our model checking method can reduce the number of wrongly injected triggers substantially, providing a key prerequisite for fast and artifact free CMRI.

Keywords

Fetal Heart MRI Cardiovascular Triggering Model checking 

Notes

Compliance with ethical standard

Conflict of interest

K. Fehrs, F. Kording and C. Ruprecht are the founders of the company northh medical GmbH. The other authors declare that they have no conflict of interest.

Informed consent

For this type of study, formal consent is not required.

References

  1. 1.
    Alnuaimi SA, Jimaa S, Khandoker AH (2017) Fetal cardiac doppler signal processing techniques: challenges and future research directions. Front Bioeng Biotechnol 5:82CrossRefGoogle Scholar
  2. 2.
    Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126(2):183–235CrossRefGoogle Scholar
  3. 3.
    Antoni ST, Rinast J, Ma X, Schupp S, Schlaefer A (2016) Online model checking for monitoring surrogate-based respiratory motion tracking in radiation therapy. Int J Comput Assist Radiol Surg 11(11):2085–2096CrossRefGoogle Scholar
  4. 4.
    Baier C, Katoen JP (2008) Principles of model checking. The MIT Press, LondonGoogle Scholar
  5. 5.
    Cimatti A (2001) Industrial applications of model checking. Springer, Berlin, pp 153–168Google Scholar
  6. 6.
    Dürichen R, Wissel T, Ernst F, Schlaefer A, Schweikard A (2014) Multivariate respiratory motion prediction. Phys Med Biol 59(20):6043–6060CrossRefGoogle Scholar
  7. 7.
    Ernst F (2012) Compensating for quasi-periodic motion in robotic radiosurgery. Springer, New YorkCrossRefGoogle Scholar
  8. 8.
    Ferreira PF, Gatehouse PD, Mohiaddin RH, Firmin DN (2013) Cardiovascular magnetic resonance artefacts. J Cardiovasc Magn Reson 15(1):41CrossRefGoogle Scholar
  9. 9.
    Firpo C, Hoffman JI, Silverman NH (2001) Evaluation of fetal heart dimensions from 12 weeks to term. Am J Cardiol 87(5):594–600CrossRefGoogle Scholar
  10. 10.
    Frauenrath T, Hezel F, Renz W, d’Orth TdG, Dieringer M, von Knobelsdorff-Brenkenhoff F, Prothmann M, Schulz Menger J, Niendorf T (2010) Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson 12:67CrossRefGoogle Scholar
  11. 11.
    Hornberger LK, Sahn DJ (2007) Rhythm abnormalities of the fetus. Heart (Br Card Soc) 93(10):1294–1300CrossRefGoogle Scholar
  12. 12.
    Jansz MS, Seed M, van Amerom JFP, Wong D, Grosse-Wortmann L, Yoo SJ, Macgowan CK (2010) Metric optimized gating for fetal cardiac MRI. Magn Reson Med 64(5):1304–1314CrossRefGoogle Scholar
  13. 13.
    Kording F, Ruprecht C, Schoennagel B, Fehrs K, Yamamura J, Adam G, Goebel J, Nassenstein K, Maderwald S, Quick HH, Kraff O (2017) Doppler ultrasound triggering for cardiac MRI at 7T. Magn Reson Med 74:1291Google Scholar
  14. 14.
    Kording F, Tavares de Sousa M, Yamamura J, Kladeck M, Gerhard A, Ruprecht C, Schoennagel B (2016) Funktionelle fetale kardiale MRT Bildgebung basierend auf Doppler-Ultraschall: Erste Erfahrungen. Fortschr Röntgenstr 188(S 01):RK205\_2Google Scholar
  15. 15.
    Nacif MS, Zavodni A, Kawel N, Choi EY, Lima JAC, Bluemke DA (2012) Cardiac magnetic resonance imaging and its electrocardiographs (ECG): tips and tricks. Int J Cardiovasc Imaging 28(6):1465–1475CrossRefGoogle Scholar
  16. 16.
    Paley MNJ, Morris JE, Jarvis D, Griffiths PD (2013) Fetal electrocardiogram (fECG) gated MRI. Sensors (Basel, Switzerland) 13(9):11,271–11,279CrossRefGoogle Scholar
  17. 17.
    Seeger A, Fenchel MC, Greil GF, Martirosian P, Kramer U, Bretschneider C, Doering J, Claussen CD, Sieverding L, Miller S (2009) Three-dimensional cine MRI in free-breathing infants and children with congenital heart disease. Pediatr Radiol 39(12):1333–1342CrossRefGoogle Scholar
  18. 18.
    Sievers B, Wiesner M, Kiria N, Speiser U, Schoen S, Strasser RH (2011) Influence of the trigger technique on ventricular function measurements using 3-Tesla magnetic resonance imaging: comparison of ECG versus pulse wave triggering. Acta Radiol (Stockholm, Sweden: 1987) 52(4):385–392Google Scholar
  19. 19.
    Untenberger M, Tan Z, Voit D, Joseph AA, Roeloffs V, Merboldt KD, Schätz S, Frahm J (2016) Advances in real-time phase-contrast flow MRI using asymmetric radial gradient echoes. Magn Reson Med 75(5):1901–1908CrossRefGoogle Scholar
  20. 20.
    van Amerom JFP, Lloyd DFA, Price AN, Kuklisova Murgasova M, Aljabar P, Malik SJ, Lohezic M, Rutherford MA, Pushparajah K, Razavi R, Hajnal JV (2018) Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection. Magn Reson Med 79(1):327–338CrossRefGoogle Scholar
  21. 21.
    Yamamura J, Kopp I, Frisch M, Fischer R, Valett K, Hecher K, Adam G, Wedegartner U (2012) Cardiac MRI of the fetal heart using a novel triggering method: initial results in an animal model. J Magn Reson Imaging JMRI 35(5):1071–1076CrossRefGoogle Scholar

Copyright information

© CARS 2018

Authors and Affiliations

  • Sven-Thomas Antoni
    • 1
  • Sascha Lehmann
    • 2
  • Maximilian Neidhardt
    • 1
  • Kai Fehrs
    • 3
  • Christian Ruprecht
    • 3
  • Fabian Kording
    • 3
  • Gerhard Adam
    • 3
  • Sibylle Schupp
    • 2
  • Alexander Schlaefer
    • 1
  1. 1.Institute of Medical TechnologyHamburg University of TechnologyHamburgGermany
  2. 2.Institute for Software SystemsHamburg University of TechnologyHamburgGermany
  3. 3.Center for Radiology and EndoscopyMedical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations