Extraction of open-state mitral valve geometry from CT volumes

  • Lennart TautzEmail author
  • Mathias Neugebauer
  • Markus Hüllebrand
  • Katharina Vellguth
  • Franziska Degener
  • Simon Sündermann
  • Isaac Wamala
  • Leonid Goubergrits
  • Titus Kuehne
  • Volkmar Falk
  • Anja Hennemuth
Original Article



The importance of mitral valve therapies is rising due to an aging population. Visualization and quantification of the valve anatomy from image acquisitions is an essential component of surgical and interventional planning. The segmentation of the mitral valve from computed tomography (CT) acquisitions is challenging due to high variation in appearance and visibility across subjects. We present a novel semi-automatic approach to segment the open-state valve in 3D CT volumes that combines user-defined landmarks to an initial valve model which is automatically adapted to the image information, even if the image data provide only partial visibility of the valve.


Context information and automatic view initialization are derived from segmentation of the left heart lumina, which incorporates topological, shape and regional information. The valve model is initialized with user-defined landmarks in views generated from the context segmentation and then adapted to the image data in an active surface approach guided by landmarks derived from sheetness analysis. The resulting model is refined by user landmarks.


For evaluation, three clinicians segmented the open valve in 10 CT volumes of patients with mitral valve insufficiency. Despite notable differences in landmark definition, the resulting valve meshes were overall similar in appearance, with a mean surface distance of \(1.62 \pm 2.10\) mm. Each volume could be segmented in 5–22 min.


Our approach enables an expert user to easily segment the open mitral valve in CT data, even when image noise or low contrast limits the visibility of the valve.


Mitral valve Modeling Segmentation Geometry Computed tomography 



This work is part of the BMBF VIP+ project DSS Mitral (partially funded by the German Federal Ministry of Education and Research under Grant 03VP00852).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11548_2018_1831_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (pdf 1282 KB)


  1. 1.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, De Ferranti S, Desprs J-P, Fullerton HJ (2016) Heart disease and stroke statistics-2016 update: a report from the American heart association. Circulation 133(4):447–454CrossRefPubMedGoogle Scholar
  2. 2.
    Iung B, Vahanian A (2014) Epidemiology of acquired valvular heart disease. Can J Cardiol 30:962–970CrossRefPubMedGoogle Scholar
  3. 3.
    Beckmann A, Funkat A-K, Lewandowski J, Frie M, Ernst M, Hekmat K, Schiller W, Gummert J, Harringer W (2017) German heart surgery report 2016: the annual updated registry of the German society for thoracic and cardiovascular surgery. Thorac Cardiovasc Surg 65:505–518CrossRefPubMedGoogle Scholar
  4. 4.
    Klawki R, Schmidt K, Heinemann M (eds) (2016) Deutscher Herzbericht. Deutsche Herzstiftung (German) Google Scholar
  5. 5. staff (2014) Medical gallery of Blausen Medical 2014. WikiJ Med 1(2):5Google Scholar
  6. 6.
    De Bonis M, Al-Attar N, Antunes M, Borger M, Casselman F, Falk V, Folliguet T, Iung B, Lancellotti P, Lentini S, Maisano F, Messika-Zeitoun D, Muneretto C, Pibarot P, Pierard L, Punjabi P, Rosenhek R, Suwalski P, Vahanian A, Wendler O, Prendergast B (2016) Surgical and interventional management of mitral valve regurgitation: a position statement from the European Society of Cardiology Working Groups on cardiovascular surgery and valvular heart disease. Eur Heart J 37:133–139CrossRefPubMedGoogle Scholar
  7. 7.
    Kirişli HA, Schaap M, Klein S, Papadopoulou S-L, Bonardi M, Chen C-H, Weustink AC, Mollet NR, Vonken E-J, van der Geest RJ, van Walsum T, Niessen WJ (2010) Evaluation of a multi-atlas based method for segmentation of cardiac CTA data: a large-scale, multicenter, and multivendor study. Med Phys 37(12):6279–6291CrossRefPubMedGoogle Scholar
  8. 8.
    Cai K, Yang R, Chen H, Li L, Zhou J, Ou S, Liu F (2017) A framework combining window width-level adjustment and Gaussian filter-based multi-resolution for automatic whole heart segmentation. Neurocomputing 220:138–150CrossRefGoogle Scholar
  9. 9.
    Mortazi A, Burt J, Bagci U (2017) Multi-planar deep segmentation networks for cardiac substructures from MRI and CT. arXiv e-printsGoogle Scholar
  10. 10.
    Larrey-Ruiz J, Morales-Snchez J, Bastida-Jumilla MC, Menchn-Lara RM, Verd-Monedero R, Sancho-Gmez JL (2014) Automatic image-based segmentation of the heart from CT scans. EURASIP J Image Video 2014:52CrossRefGoogle Scholar
  11. 11.
    Schneider RJ, Perrin DP, Vasilyev NV, Marx GR, del Nido PJ, Howe RD (2010) Mitral annulus segmentation from 3D ultrasound using graph cuts. IEEE Trans Med Imaging 29:1676–1687CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lassen B, van Rikxoort EM, Schmidt M, Kerkstra S, van Ginneken B, Kuhnigk J-M (2013) Automatic segmentation of the pulmonary lobes from chest CT scans based on fissures, vessels, and bronchi. IEEE Trans Med Imaging 32:210–222CrossRefPubMedGoogle Scholar
  13. 13.
    Descoteaux M, Audette M, Chinzei K, Siddiqi K (2006) Bone enhancement filtering: application to sinus bone segmentation and simulation of pituitary surgery. Comput Aided Surg 11(5):247–255CrossRefPubMedGoogle Scholar
  14. 14.
    Votta E, Le TB, Stevanella M, Fusini L, Caiani EG, Redaelli A, Sotiropoulos F (2013) Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J Biomech 46:217–228CrossRefPubMedGoogle Scholar
  15. 15.
    Ionasec RI, Voigt I, Georgescu B, Wang Y, Houle H, Vega-Higuera F, Navab N, Comaniciu D (2010) Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and TEE. IEEE Trans Med Imaging 29:1636–1651CrossRefPubMedGoogle Scholar
  16. 16.
    Grbic S, Ionasec R, Vitanovski D, Voigt I, Wang Y, Georgescu B, Navab N, Comaniciu D (2012) Complete valvular heart apparatus model from 4D cardiac CT. Med Image Anal 16:1003–1014CrossRefPubMedGoogle Scholar
  17. 17.
    Mansi T, Voigt I, Georgescu B, Zheng X, Mengue EA, Hackl M, Ionasec RI, Noack T, Seeburger J, Comaniciu D (2012) An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med Image Anal 16:1330–1346CrossRefPubMedGoogle Scholar
  18. 18.
    Grbic S, Easley TF, Mansi T, Bloodworth CH, Pierce EL, Voigt I, Neumann D, Krebs J, Yuh DD, Jensen MO (2014) Multi-modal validation framework of mitral valve geometry and functional computational models. STACOM 2014:239–248Google Scholar
  19. 19.
    Grbic S, Easley TF, Mansi T, Bloodworth CH, Pierce EL, Voigt I, Neumann D, Krebs J, Yuh DD, Jensen MO, Comaniciu D, Yoganathan AP (2017) Personalized mitral valve closure computation and uncertainty analysis from 3D echocardiography. Med Image Anal 35:238–249CrossRefPubMedGoogle Scholar
  20. 20.
    Blanke P, Dvir D, Cheung A, Levine RA, Thompson C, Webb JG, Leipsic J (2015) Mitral annular evaluation with CT in the context of transcatheter mitral valve replacement. JACC Cardiovasc Imaging 8:612–615CrossRefPubMedGoogle Scholar
  21. 21.
    Wang Q, Sun W (2013) Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann Biomed Eng 41:142–153CrossRefPubMedGoogle Scholar
  22. 22.
    Toma M, Jensen M, Einstein DR, Yoganathan AP, Cochran RP, Kunzelman KS (2016) Fluid-structure interaction analysis of papillary muscle forces using a comprehensive mitral valve model with 3D chordal structure. Ann Biomed Eng 44:942–953CrossRefPubMedGoogle Scholar
  23. 23.
    Khalighi AH, Drach A, Bloodworth CH, Pierce EL, Yoganathan AP, Gorman RC, Gorman JH, Sacks MS (2017) Mitral valve chordae tendineae: topological and geometrical characterization. Ann Biomed Eng 45:378–393CrossRefPubMedGoogle Scholar
  24. 24.
    Drach A, Gorman RC, Gorman JH, Sacks MS (2017) Multi-resolution geometric modeling of the mitral heart valve leaflets. Biomech Model Mechanobiol 17(2):351–366PubMedGoogle Scholar
  25. 25.
    Gosnell J, Pietila T, Samuel BP, Kurup HKN, Haw MP, Vettukattil JJ (2016) Integration of computed tomography and three-dimensional echocardiography for hybrid three-dimensional printing in congenital heart disease. J Digit Imaging 29:665–669CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vukicevic M, Puperi DS, Jane Grande-Allen K, Little SH (2017) 3D printed modeling of the mitral valve for catheter-based structural interventions. Ann Biomed Eng 45:508–519CrossRefPubMedGoogle Scholar
  27. 27.
    Votta E, Caiani E, Veronesi F, Soncini M, Montevecchi FM, Redaelli A (2008) Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos Trans A Math Phys Eng Sci 366:3411–3434CrossRefPubMedGoogle Scholar
  28. 28.
    Pouch AM, Xu C, Yushkevich PA, Jassar AS, Vergnat M, Gorman JH, Gorman RC, Sehgal CM, Jackson BM (2012) Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. J Biomech 45:903–907CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pouch AM, Wang H, Takabe M, Jackson B, Gorman J, Gorman R, Yushkevich P, Sehgal C (2014) Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Med Image Anal 18:118–129CrossRefPubMedGoogle Scholar
  30. 30.
    Schneider RJ, Perrin DP, Vasilyev NV, Marx GR, del Nido PJ, Howe RD (2012) Mitral annulus segmentation from four-dimensional ultrasound using a valve state predictor and constrained optical flow. Med Image Anal 16:497–504CrossRefPubMedGoogle Scholar
  31. 31.
    Graser B, Wald D, Al-Maisary S, Grossgasteiger M, de Simone R, Meinzer H-P, Wolf I (2013) Using a shape prior for robust modeling of the mitral annulus on 4D ultrasound data. Int J Comput Assist Radiol Surg 9(4):635–644Google Scholar
  32. 32.
    Wenk JF, Zhang Z, Cheng G, Malhotra D, Acevedo-Bolton G, Burger M, Suzuki T, Saloner DA, Wallace AW, Guccione JM (2010) First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann Thorac Surg 89(5):1546–1553CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stevanella M, Maffessanti F, Conti CA, Votta E, Arnoldi A, Lombardi M, Parodi O, Caiani EG, Redaelli A (2011) Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. Cardiovasc Eng Technol 2:66–76CrossRefGoogle Scholar
  34. 34.
    Mosaliganti K, Gelas A, Cowgill P, Megason S (2009) An optimized N-dimensional hough filter for detecting spherical image objects. Insight JGoogle Scholar
  35. 35.
    Lassen B, Kuhnigk J-M, Schmidt M, Krass S, Peitgen H-O (2011) Lung and lung lobe segmentation methods at Fraunhofer MEVIS. In: Fourth international workshop on pulmonary image analysis, vol 2011, pp 185–200Google Scholar
  36. 36.
    Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097CrossRefPubMedGoogle Scholar
  37. 37.
    Ritter F, Boskamp T, Homeyer A, Laue H, Schwier M, Link F, Peitgen H (2011) Medical image analysis. IEEE Pulse 2:60–70CrossRefPubMedGoogle Scholar
  38. 38.
    Wolak A, Gransar H, Thomson LE, Friedman JD, Hachamovitch R, Gutstein A, Shaw LJ, Polk D, Wong ND, Saouaf R, Hayes SW, Rozanski A, Slomka PJ, Germano G, Berman DS (2008) Aortic size assessment by noncontrast cardiac computed tomography: normal limits by age, gender, and body surface area. JACC Cardiovasc Imaging 1:200–209CrossRefPubMedGoogle Scholar
  39. 39.
    Klues HG, Proschan MA, Dollar AL, Spirito P, Roberts WC, Maron BJ (1993) Echocardiographic assessment of mitral valve size in obstructive hypertrophic cardiomyopathy. Anatomic validation from mitral valve specimen. Circulation 88(2):548–555CrossRefPubMedGoogle Scholar
  40. 40.
    Kunzelman K, Cochran R, Verrier E, Eberhart R (1994) Anatomic basis for mitral valve modelling. J Heart Valve Dis 3(5):491–496PubMedGoogle Scholar

Copyright information

© CARS 2018

Authors and Affiliations

  • Lennart Tautz
    • 1
    • 2
    Email author
  • Mathias Neugebauer
    • 1
  • Markus Hüllebrand
    • 1
    • 2
  • Katharina Vellguth
    • 2
  • Franziska Degener
    • 2
    • 3
  • Simon Sündermann
    • 3
  • Isaac Wamala
    • 3
  • Leonid Goubergrits
    • 2
  • Titus Kuehne
    • 2
    • 3
  • Volkmar Falk
    • 2
    • 3
  • Anja Hennemuth
    • 1
    • 2
  1. 1.Fraunhofer MEVISBremenGermany
  2. 2.Charité - Universitätsmedizin BerlinBerlinGermany
  3. 3.German Heart Institute Berlin - DHZBBerlinGermany

Personalised recommendations