Advertisement

Toward a standard ontology of surgical process models

  • Bernard Gibaud
  • Germain Forestier
  • Carolin Feldmann
  • Giancarlo Ferrigno
  • Paulo Gonçalves
  • Tamás Haidegger
  • Chantal Julliard
  • Darko Katić
  • Hannes Kenngott
  • Lena Maier-Hein
  • Keno März
  • Elena de Momi
  • Dénes Ákos Nagy
  • Hirenkumar Nakawala
  • Juliane Neumann
  • Thomas Neumuth
  • Javier Rojas Balderrama
  • Stefanie Speidel
  • Martin Wagner
  • Pierre Jannin
Original Article

Abstract

Purpose

The development of common ontologies has recently been identified as one of the key challenges in the emerging field of surgical data science (SDS). However, past and existing initiatives in the domain of surgery have mainly been focussing on individual groups and failed to achieve widespread international acceptance by the research community. To address this challenge, the authors of this paper launched a European initiative—OntoSPM Collaborative Action—with the goal of establishing a framework for joint development of ontologies in the field of SDS. This manuscript summarizes the goals and the current status of the international initiative.

Methods

A workshop was organized in 2016, gathering the main European research groups having experience in developing and using ontologies in this domain. It led to the conclusion that a common ontology for surgical process models (SPM) was absolutely needed, and that the existing OntoSPM ontology could provide a good starting point toward the collaborative design and promotion of common, standard ontologies on SPM.

Results

The workshop led to the OntoSPM Collaborative Action—launched in mid-2016—with the objective to develop, maintain and promote the use of common ontologies of SPM relevant to the whole domain of SDS. The fundamental concept, the architecture, the management and curation of the common ontology have been established, making it ready for wider public use.

Conclusion

The OntoSPM Collaborative Action has been in operation for 24 months, with a growing dedicated membership. Its main result is a modular ontology, undergoing constant updates and extensions, based on the experts’ suggestions. It remains an open collaborative action, which always welcomes new contributors and applications.

Notes

Acknowledgements

This work was initiated in the context of the S3PM project which received a French government support granted to the CominLabs excellence laboratory and managed by the National Research Agency in the ”Investing for the Future” program under reference ANR-10-LABX-07-01. The work on ontological modeling at the DKFZ is supported by the Federal Ministry of Economics and Energy (BMWi) and the German Aerospace Center (DLR). The work on ontological modeling at Politecnico (Milano) has received funding from the European Unions Horizon 2020 research and innovation program under grant agreement No. H2020-ICT-2016-732515. It was also partly supported by Instituto Politecnico de Castelo Branco and by FCT, through IDMEC, under LAETA, project UID/EMS/50022/2013. T. Haidegger is supported through the New National Excellence Program of the Ministry of Human Capacities, his research was partially supported by the Hungarian OTKA PD 116121 grant. This work has been partially supported by ACMIT (Austrian Center for Medical Innovation and Technology), which is funded within the scope of the COMET (Competence Centers for Excellent Technologies) program of the Austrian Government. We acknowledge the financial support of this work by the Hungarian State and the European Union under the EFOP-3.6.1-16-2016-00010 project. The work at ICCAS was funded by the German Ministry of Education and Research (BMBF).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animal performed by any of the authors.

Informed consent

Statement of informed consent was not applicable since the manuscript does not contain any patient data.

References

  1. 1.
    Annals of Surgery—Instructions for Authors. http://edmgr.ovid.com/annsurg/accounts/ifauth.htm. Accessed 6 Dec 2017
  2. 2.
    IEEE standard 1872–2015—Ontologies for Robotics and Automation (2015) IEEE Robotics and Automation Society.  https://doi.org/10.1109/IEEESTD.2015.7084073
  3. 3.
    Bieck R, Heuermann K, Schmidt M, Schmitgen A, Arnold S, Dietz A, Thomas N (2016) Towards an information presentation model of a situation-aware navigation system in functional endoscopic sinus surgery. In: 15. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie, CURAC2016. Bern, SwitzerlandGoogle Scholar
  4. 4.
    Blencowe NS, Mills N, Cook JA, Donovan JL, Rogers CA, Whiting P, Blazeby JM (2016) Standardizing and monitoring the delivery of surgical interventions in randomized clinical trials. Br J Surg 103(10):1377–1384.  https://doi.org/10.1002/bjs.10254 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bonjer HJ, Deijen CL, Abis GA, Cuesta MA, van der Pas MH, de Lange-de Klerk ES, Lacy AM, Bemelman WA, Andersson J, Angenete E, Rosenberg J, Fuerst A, Haglind E (2015) A randomized trial of laparoscopic versus open surgery for rectal cancer. N Engl J Med 372(14):1324–1332.  https://doi.org/10.1056/NEJMoa1414882 CrossRefPubMedGoogle Scholar
  6. 6.
    Carbonera JL, Fiorini SR, Prestes E, Jorge VAM, Abel M, Madhavan R, Locoro A, Gonçalves P, Haidegger T, Barreto ME, Schlenoff C (2013) Defining positioning in a core ontology for robotics. In: The IEEE/RSJ international conference on intelligent robots and systems, IROS 2013, Tokyo, Japan.  https://doi.org/10.1109/IROS.2013.6696603
  7. 7.
    Claude G, Gouranton V, Caillaud B, Gibaud B, Arnaldi B, Jannin P (2016) Synthesis and simulation of surgical process models. In: Medicine meets virtual reality 22, MMVR22, Los Angeles, USA.  https://doi.org/10.3233/978-1-61499-625-5-63
  8. 8.
    Courtot M, Gibson F, Lister AL, Malone J, Schober D, Brinkman RR, Ruttenberg A (2009) MIREOT: the minimum information to reference an external ontology term. In: International conference on biomedical ontology, ICBO 2009, Buffalo, NY, USA.  https://doi.org/10.1038/npre.2009.3576.1
  9. 9.
    De Angelis C, Drazen JM, Frizelle FA, Haug C, Hoey J, Horton R, Kotzin S, Laine C, Marusic A, Overbeke AJP, Schroeder TV, Sox HC, Weyden MBVD (2004) Clinical trial registration: a statement from the international committee of medical journal editors. N Engl J Med 351(12):1250–1251.  https://doi.org/10.1056/NEJMe048225 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Doran P, Tamma V, Iannone L (2007) Ontology module extraction for ontology reuse: an ontology engineering perspective. In: The 16th ACM conference on information and knowledge management, CIKM ’07, Lisbon, Portugal.  https://doi.org/10.1145/1321440.1321451
  11. 11.
    Fetzer A, Metzger J, Katić D, März K, Wagner M, Philipp P, Engelhardt S, Weller T, Zelzer S, Franz AM, Schoch N, Heuveline V, Maleshkova M, Rettinger A, Speidel S, Wolf I, Kenngott H, Mehrabi Arianeb Müller-Stich BP, Maier-Hein Lena Meinzer HP, Nolden M (2016) Towards an open-source semantic data infrastructure for integrating clinical and scientific data in cognition-guided surgery. In: SPIE medical imaging, San Diego, CA, USA.  https://doi.org/10.1117/12.2217163
  12. 12.
    Forestier G, Lalys F, Riffaud L, Collins DL, Meixensberger J, Wassef SN, Neumuth T, Goulet B, Jannin P (2013) Multi-site study of surgical practice in neurosurgery based on surgical process models. J Biomed Inform 46(5):822–829.  https://doi.org/10.1016/j.jbi.2013.06.006 CrossRefPubMedGoogle Scholar
  13. 13.
    Franke S, Neumuth T (2015) Rule-based medical device adaptation for the digital operating room. In: The 37th international conference of the IEEE engineering in medicine and biology society, EMBC’15, Milan, Italy.  https://doi.org/10.1109/EMBC.2015.7318712
  14. 14.
    Gallagher AG, O’Sullivan GC (2012) Fundamentals of surgical simulation: principles and practice. Springer, London.  https://doi.org/10.1007/978-0-85729-763-1 CrossRefGoogle Scholar
  15. 15.
    Garraud C, Gibaud B, Penet C, Cazuguel Dardenne G Jannin P (2014) An ontology-based software for the analysis of surgical process model. In: Computer-assisted medical interventions: scientific problems, tools and clinical applications, Surgetica, Chambery, FranceGoogle Scholar
  16. 16.
    Gibaud B, Garfagni H, Aubry F, Pokropek AT, Chameroy V, Bizais Y, Di Paola R (1988) Standardization in the field of medical image management: the contribution of the MIMOSA model. IEEE Trans Med Imaging 17(1):62–73.  https://doi.org/10.1109/42.668695 CrossRefGoogle Scholar
  17. 17.
    Gibaud B, Penet C, Jannin P (2014) OntoSPM: a core ontology of surgical procedure models. In: Computer-assisted medical interventions: scientific problems, tools and clinical applications, Surgetica, Chambery, FranceGoogle Scholar
  18. 18.
    Gkoutos GV, Schofield PN, Hoehndorf R (2012) The units ontology: a tool for integrating units of measurement in science. Database 2012:1–7.  https://doi.org/10.1093/database/bas033 CrossRefGoogle Scholar
  19. 19.
    Gonçalves PJS (2016) Ontologies applied to surgical robotics. In: Second Iberian robotics conference, Robot’2015, Lisbon, Portugal.  https://doi.org/10.1007/978-3-319-27149-1_37
  20. 20.
    Gonçalves PJS, Torres PMB (2015) Knowledge representation applied to robotic orthopedic surgery. Robot Comput Integr Manuf 33:90–99.  https://doi.org/10.1016/j.rcim.2014.08.014 CrossRefGoogle Scholar
  21. 21.
    Gonçalves PJS, Torres PMB, Santos F, António R, Catarino N, Martins JMM (2015) A vision system for robotic ultrasound guided orthopaedic surgery. J Intell Robot Syst 77(2):327–339.  https://doi.org/10.1007/s10846-013-0012-7 CrossRefGoogle Scholar
  22. 22.
    Haidegger T, Barreto M, Gonçalves P, Habib MK, Ragavan SKV, Li H, Vaccarella A, Perrone R, Prestes E (2013) Applied ontologies and standards for service robots. Robot Auton Syst 61(11):1215–1223.  https://doi.org/10.1016/j.robot.2013.05.008 CrossRefGoogle Scholar
  23. 23.
    Haidegger T (2012) Standardization efforts in medical robotics. In: Modular surgical robotics: how can we make it possible? Eurosurge, Saint Paul, MN, USAGoogle Scholar
  24. 24.
    Heilbrun ME (2013) Evaluating radlex and real world radiology reporting: are we there yet? J Acad Radio 20(11):1327–1328.  https://doi.org/10.1016/j.acra.2013.09.011 CrossRefGoogle Scholar
  25. 25.
    Heim E, Seitel A, Isensee F, Andrulis J, Stock C, Ross T, Maier-Hein L (2017) Clickstream analysis for crowd-based object segmentation with confidence. IEEE Trans Pattern Anal Mach Intell.  https://doi.org/10.1109/TPAMI.2017.2777967
  26. 26.
    Horrocks I (2008) Ontologies and the semantic web. Commun ACM 51(12):58–67.  https://doi.org/10.1145/1409360.1409377 CrossRefGoogle Scholar
  27. 27.
    Huaulmé A, Voros S, Riffaud L, Forestier G, Moreau-Gaudry A, Jannin P (2017) Distinguishing surgical behavior by sequential pattern discovery. J Biomed Inform 67:34–41.  https://doi.org/10.1016/j.jbi.2017.02.001 CrossRefPubMedGoogle Scholar
  28. 28.
    Hüttner F, Doerr-Harim C, Probst P, Tenckhoff S, Knebel P, Diener M (2014) Study methods in evidence-based surgery: methodological impediments and suggested approaches for the creation and transfer of knowledge in surgery. Eur Surg Res 53(1–4):86–94.  https://doi.org/10.1159/000366201 CrossRefPubMedGoogle Scholar
  29. 29.
    Jannin P, Morandi X (2007) Surgical models for computer-assisted neurosurgery. Neuroimage 37(1):783–791.  https://doi.org/10.1016/j.neuroimage.2007.05.034 CrossRefPubMedGoogle Scholar
  30. 30.
    Jannin P, Raimbault M, Morandi X, Riffaud L, Gibaud B (2003) Model of surgical procedures for multimodal image-guided neurosurgery. J Comput Aided Surg 8(2):98–106CrossRefGoogle Scholar
  31. 31.
    Joyce JP, Lapinsky GW (1983) A history and overview of the safety parameter display system concept. IEEE Trans Nucl Sci 30(1):744–749.  https://doi.org/10.1109/TNS.1983.4332369 CrossRefGoogle Scholar
  32. 32.
    Katić D, Julliard C, Wekerle AL, Kenngott H, Müller-Stich BP, Dillmann R, Speidel S, Jannin P, Gibaud B (2015) LapOntoSPM: an ontology for laparoscopic surgeries and its application to surgical phase recognition. Int J Comput Assist Radiol Surg 10(9):1427–1434.  https://doi.org/10.1007/s11548-015-1222-1 CrossRefPubMedGoogle Scholar
  33. 33.
    Katić D, Maleshkova M, Engelhardt S, Wolf I, März K, Maier-Hein L, Nolden M, Wagner M, Kenngott H, Mller-Stich BP, Dillmann R, Speidel S (2016) What does it all mean? Capturing semantics of surgical data and algorithms with ontologies. In: Surgical data science workshop, Heidelberg, GermanyGoogle Scholar
  34. 34.
    Katić D, Schuck J, Wekerle AL, Kenngott H, Müller-Stich BP, Dillmann R, Speidel S (2016) Bridging the gap between formal and experience-based knowledge for context-aware laparoscopy. Int J Comput Assist Radiol Surg 11(6):881–888.  https://doi.org/10.1007/s11548-016-1379-2 CrossRefPubMedGoogle Scholar
  35. 35.
    Katić D, Wekerle AL, Görtler J, Spengler P, Bodenstedt S, Röhl S, Suwelack S, Kenngott HG, Wagner M, Müller-Stich BP, Dillmann R, Speidel S (2013) Context-aware augmented reality in laparoscopic surgery. Comput Med Imaging Gr 37(2):174–182.  https://doi.org/10.1016/j.compmedimag.2013.03.003 CrossRefGoogle Scholar
  36. 36.
    Kowalewski KF, Hendrie JD, Schmidt MW, Garrow CR, Bruckner T, Proctor T, Paul S, Adigüzel D, Bodenstedt S, Erben A, Kenngott H, Erben Y, Speidel S, Müller-Stich BP, Nickel F (2017) Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon. Surg Endosc 31(5):2155–2165.  https://doi.org/10.1007/s00464-016-5213-2 CrossRefPubMedGoogle Scholar
  37. 37.
    Kowalewski KF, Hendrie JD, Schmidt MW, Proctor T, Paul S, Garrow CR, Kenngott HG, Müller-Stich BP, Nickel F (2017) Validation of the mobile serious game application Touch Surgery for cognitive training and assessment of laparoscopic cholecystectomy. Surg Endosc 31(10):4058–4066.  https://doi.org/10.1007/s00464-017-5452-x CrossRefPubMedGoogle Scholar
  38. 38.
    Lalys F, Jannin P (2014) Surgical process modelling: a review. Int J Comput Assist Radiol Surg 9(3):495–511.  https://doi.org/10.1007/s11548-013-0940-5 CrossRefPubMedGoogle Scholar
  39. 39.
    Lougheed M, Wasilewski N, Morra A, Minard J (2018) Use of SNOMED CT and LOINC to standardize terminology for primary care asthma electronic health records. J Asthma 55(6):629–639.  https://doi.org/10.1080/02770903.2017.1362424 CrossRefPubMedGoogle Scholar
  40. 40.
    Maier-Hein L, Mersmann S, Kondermann D, Bodenstedt S, Sanchez A, Stock C, Kenngott HG, Eisenmann M, Speidel S (2014) Can masses of non-experts train highly accurate image classifiers? In: Medical image computing and computer-assisted intervention MICCAI 2014, lecture notes in computer science. Springer, Cham.  https://doi.org/10.1007/978-3-319-10470-6_55
  41. 41.
    Maier-Hein L, Ross T, Gröhl J, Glocker B, Bodenstedt S, Stock C, Heim E, Götz M, Wirkert S, Kenngott H, Speidel S, Maier-Hein K (2016) Crowd-algorithm collaboration for large-scale endoscopic image annotation with confidence. In: Medical image computing and computer-assisted intervention MICCAI 2016, lecture notes in computer science. Springer, ChamGoogle Scholar
  42. 42.
    Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S, Hashizume M, Katic D, Kenngott H, Kranzfelder M, Malpani A, März K, Neumuth T, Padoy N, Pugh C, Schoch N, Stoyanov D, Taylor R, Wagner M, Hager GD, Jannin P (2017) Surgical data science for next-generation interventions. Nat Biomed Eng 1(9):691–696.  https://doi.org/10.1038/s41551-017-0132-7 CrossRefGoogle Scholar
  43. 43.
    März K, Hafezi M, Weller T, Saffari A, Nolden M, Fard N, Majlesara A, Zelzer S, Maleshkova M, Volovyk M, Gharabaghi N, Wagner M, Emami G, Engelhardt S, Fetzer A, Kenngott H, Rezai N, Rettinger A, Studer R, Mehrabi A, Maier-Hein L (2015) Toward knowledge-based liver surgery: holistic information processing for surgical decision support. Int J Comput Assist Radiol Surg 10(6):749–759.  https://doi.org/10.1007/s11548-015-1187-0 CrossRefPubMedGoogle Scholar
  44. 44.
    Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A (2003) WonderWeb Deliverable D18. The ontology library, Laboratory For Applied Ontology - ISTC-CNRGoogle Scholar
  45. 45.
    Mechouche A, Morandi X, Golbreich C, Gibaud B (2009) A hybrid system using symbolic and numeric knowledge for the semantic annotation of sulco-gyral anatomy in brain MRI images. IEEE Trans Med Imaging 28(8):1165–1178.  https://doi.org/10.1109/TMI.2009.2026746 CrossRefPubMedGoogle Scholar
  46. 46.
    Morineau T, Morandi X, Le Moëllic N, Diabira S, Riffaud L, Haegelen C, Hénaux PL, Jannin P (2009) Decision making during preoperative surgical planning. Hum Factors 51(1):67–77.  https://doi.org/10.1177/0018720809332847 CrossRefPubMedGoogle Scholar
  47. 47.
    Mudunuri R, Burgert O, Neumuth T (2009) Ontological modelling of surgical knowledge. In: Jahrestagung der Gesellschaft für Informatik. Springer, Lübeck, Germany.  https://doi.org/10.1007/s11548-007-0114-4
  48. 48.
    Mudunuri R, Neumuth T, Strauß G, Dietz A, Meixensberger J, Burgert O (2007) SOCAS: surgical ontologies for computer assisted surgery. In: The 21th international congress and exhibition on computer assisted radiology and surgery, CARS 2007, Berlin, Germany.  https://doi.org/10.1007/s11548-007-0114-4
  49. 49.
    Mungall C, Gkoutos G, Washington N, Lewis S (2007) Representing phenotypes in OWL. In: Workshop on OWL: experiences and directions, OWLED 2007, Innsbruck, AustriaGoogle Scholar
  50. 50.
    Nakawala H, Ferrigno G, de Momi E (2017) Toward a knowledge-driven context-aware system for surgical assistance. J Med Robot Res 2(3):1740007.  https://doi.org/10.1142/S2424905X17400074 CrossRefGoogle Scholar
  51. 51.
    Nakawala H, de Momi E, Pescatori LE, Morelli A, Ferrigno G (2017) Inductive learning of the surgical workflow model through video annotations. In: The IEEE 30th international symposium on computer-based medical systems, CBMS 2017, Thessaloniki, Greece.  https://doi.org/10.1109/CBMS.2017.91
  52. 52.
    Neuhaus F, Vizedom A, Baclawski K, Bennett M, Dean M, Denny M, Grüninger M, Hashemi A, Longstreth T, Obrst L, Ray S, Sriram R, Schneider T, Vegetti M, West M, Yim P (2013) Towards ontology evaluation across the life cycle: the ontology summit 2013. Appl Ontol 8(3):179–194. http://dl.acm.org/citation.cfm?id=2594763.2594765
  53. 53.
    Neumann J, Schreiber E, Neumuth T (2016) Ontology-based surgical process modeling by using SNOMED CT concepts and concept model attributes. In: The 30th international congress and exhibition on computer assisted radiology and surgery, CARS 2016, Heidelberg, Germany.  https://doi.org/10.1007/s11548-016-1412-5
  54. 54.
    Neumuth D, Loebeb F, Herre H, Neumuth T (2011) Modeling surgical processes: a four-level translational approach. Artif Intell Med 51(3):147–161.  https://doi.org/10.1016/j.artmed.2010.12.003 CrossRefPubMedGoogle Scholar
  55. 55.
    Neumuth T, Czygan M, Goldstein D, Strauß G, Meixensberger J, Burgert O (2009) Computer assisted acquisition of surgical process models with a sensor-driven ontology. In: The first workshop on modeling and monitoring of computer assisted interventions, M2CAI, London, UKGoogle Scholar
  56. 56.
    Neumuth T, Jannin P, Schlomberg J, Meixensberger J, Wiedemann P, Burgert O (2011) Analysis of surgical intervention populations using generic surgical process models. Int J Comput Assist Radiol Surg 6(1):59–72.  https://doi.org/10.1007/s11548-010-0475-y CrossRefPubMedGoogle Scholar
  57. 57.
    Neumuth T, Jannin P, Strauß G, Meixensberger J, Burgert O (2009) Validation of knowledge acquisition for surgical process models. J Am Med Inform Assoc 16(1):72–80.  https://doi.org/10.1197/jamia.M2748 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Neumuth T, Kaschek B, Neumuth D, Ceschia M, Meixensberger J, Strauß G, Burgert O (2010) An observation support system with an adaptive ontology-driven user interface for the modeling of complex behaviors during surgical interventions. Behav Res Methods 42(4):1049–1058.  https://doi.org/10.3758/BRM.42.4.1049 CrossRefPubMedGoogle Scholar
  59. 59.
    Neumuth T, Strauß G, Meixensberger J, Lemke HU, Burgert O (2006) Acquisition of process descriptions from surgical interventions. In: International conference on database and expert systems applications, DEXA 2006, Kraków, Poland.  https://doi.org/10.1007/11827405_59
  60. 60.
    Pease A, Niles I, Li J (2002) The suggested upper merged ontology: a large ontology for the semantic web and its application. In: AAAI-2002 workshop on ontologies and the semantic web, Edmonton, AB, CanadaGoogle Scholar
  61. 61.
    Perrone R, Nessi F, de Momi E, Boriero F, Capiluppi M, Fiorini P, Ferrigno G (2014) Ontology-based modular architecture for surgical autonomous robots. In: The Hamlyn symposium on medical robotics, London, UKGoogle Scholar
  62. 62.
    Philipp P, Maleshkova M, Katić D, Weber C, Götz M, Rettinger A, Speidel S, Kämpgen B, Nolden M, Wekerle AL, Dillmann R, Kenngott H, Müller-Stich BP, Studer R (2016) Toward cognitive pipelines of medical assistance algorithms. Int J Comput Assist Radiol Surg 11(9):1743–1753.  https://doi.org/10.1007/s11548-015-1322-y CrossRefPubMedGoogle Scholar
  63. 63.
    Prestes E, Carbonera JL, Rama Fiorini S, Jorge VA, Abel M, Madhavan R, Locoro A, Gonćalves P, Barreto ME, Habib M, Chibani A, Gérard S, Amirat Y, Schlenoff C (2013) Towards a core ontology for robotics and automation. Robot Auton Syst 61(11):1193–1204.  https://doi.org/10.1016/j.robot.2013.04.005 CrossRefGoogle Scholar
  64. 64.
    Reiley CE, Hager GD (2009) Task versus subtask surgical skill evaluation of robotic minimally invasive surgery. In: Medical image computing and computer-assisted intervention, MICCAI 2009, London, UK.  https://doi.org/10.1007/978-3-642-04268-3_54
  65. 65.
    Riffaud L, Neumuth T, Morandi X, Trantakis C, Meixensberger J, Burgert O, Trelhu B, Jannin P (2010) Recording of surgical processes: a study comparing senior and junior neurosurgeons during lumbar disc herniation surgery. Oper Neurosurg 67(suppl 2):ons325.  https://doi.org/10.1227/NEU.0b013e3181f741d7 CrossRefGoogle Scholar
  66. 66.
    Rodríguez-Sanjuán JC, Gómez-Ruiz M, Trugeda-Carrera S, Manuel-Palazuelos C, López-Useros A, Gómez-Fleitas M (2016) Laparoscopic and robot-assisted laparoscopic digestive surgery: present and future directions. World J Gastroenterol 22(6):1975–2004.  https://doi.org/10.3748/wjg.v22.i6.1975 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Rosse C, Mejino JL Jr (2003) A reference ontology for biomedical informatics: the foundational model of anatomy. J Biomed Inform 36(6):478–500.  https://doi.org/10.1016/j.jbi.2003.11.007 CrossRefPubMedGoogle Scholar
  68. 68.
    Schlenoff CI, Prestes E, Madhavan R, Gonçalves P, Li H, Balakirsky SB, Kramer TR, Miguelanez E (2012) An IEEE standard ontology for robotics and automation. In: The IEEE/RSJ international conference on intelligent robots and systems, IROS 2012, Vilamoura, Portugal.  https://doi.org/10.1109/IROS.2012.6385518
  69. 69.
    Schmidt G (2016) Visualizing knowledge-based liver tumor treatment planning. Ph.D. thesis, University Koblenz - LandauGoogle Scholar
  70. 70.
    Schofield PN, Gruenberge M, Sundberg JP (2010) Pathbase and the MPATH ontology: community resources for mouse histopathology. Vet Pathol 47(6):1016–1020.  https://doi.org/10.1177/0300985810374845 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Schulz KF, Altman DG, Moher D, Fergusson D (2010) CONSORT 2010 changes and testing blindness in RCTs. The Lancet 375(9721):3–9.  https://doi.org/10.1016/S0140-6736(10)60456-4 CrossRefGoogle Scholar
  72. 72.
    Schulz S, Jansen L (2013) Formal ontologies in biomedical knowledge representation. Yearb Med Inform 22(1):132–146.  https://doi.org/10.1055/s-0038-1638845 CrossRefGoogle Scholar
  73. 73.
    Siemoleit S, Uciteli A, Bieck R, Herre H (2017) Ontological modelling of situational awareness in surgical interventions. In: Proceedings of the joint ontology workshops (JOWO) 2017, episode 3: the Tyrolean autumn of ontology. CEUR workshop proceedings, vol 2050, Aachen, 2018, Bolzano, ItalyGoogle Scholar
  74. 74.
    Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ, The OBI Consortium, Leontis N, Rocca-Serra P, Ruttenberg A, Sansone SA, Scheuermann RH, Shah N, Whetzel PL, Lewis S (2007) The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25:1251–1255.  https://doi.org/10.1038/nbt1346
  75. 75.
    Smith B, Ceusters W, Ruttenberg A (2009) From basic formal ontology to the information artifact ontology. In: International conference on biomedical ontology, ICBO 2009, Buffalo, NY, USAGoogle Scholar
  76. 76.
    Smith B, Kumar A, Bittner T (2005) Basic formal ontology for bioinformatics. Technical report, Institute for Formal Ontology and Medical Information Science, Saarland University, Saarbrücken, GermanyGoogle Scholar
  77. 77.
    Spyns P, Tang Y, Meersman R (2008) An ontology engineering methodology for DOGMA. Appl Ontol 3(1–2):13–39.  https://doi.org/10.3233/AO-2008-0047 CrossRefGoogle Scholar
  78. 78.
    Sure Y, Angele J, Staab S (2002) OntoEdit: guiding ontology development by methodology and inferencing. In: On the move to meaningful internet systems 2002: CoopIS, DOA, and ODBASE, OTM 2002, Irvine, CA, USA.  https://doi.org/10.1007/3-540-36124-3_76
  79. 79.
    Temal L, Dojat M, Kassel G, Gibaud B (2008) Towards an ontology for sharing medical images and regions of interest in neuroimaging. J Biomed Inform 41(5):766–778.  https://doi.org/10.1016/j.jbi.2008.03.002 CrossRefPubMedGoogle Scholar
  80. 80.
    Tenorth M, Beetz M (2013) KnowRob: a knowledge processing infrastructure for cognition-enabled robots. Int J Robot Res 32(5):566–590.  https://doi.org/10.1177/0278364913481635 CrossRefGoogle Scholar
  81. 81.
    Torres PMB, Gonçalves PJS, Martins JMM (2015) Robotic motion compensation for bone movement, using ultrasound images. Ind Robot Int J 42(5):466–474.  https://doi.org/10.1108/IR-12-2014-0435 CrossRefGoogle Scholar
  82. 82.
    Wang AY, Sable JH, Spackman KA (2002) The SNOMED clinical terms development process: refinement and analysis of content. In: Proceedings of the AMIA symposium, San Antonio, TX, USAGoogle Scholar
  83. 83.
    Xiang Z, Courtot M, Brinkman RR, Ruttenberg A, He Y (2010) Ontofox: web-based support for ontology reuse. BMC Res Notes 3(1):175.  https://doi.org/10.1186/1756-0500-3-175 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© CARS 2018

Authors and Affiliations

  • Bernard Gibaud
    • 1
  • Germain Forestier
    • 4
  • Carolin Feldmann
    • 2
  • Giancarlo Ferrigno
    • 3
  • Paulo Gonçalves
    • 5
    • 6
  • Tamás Haidegger
    • 7
    • 8
  • Chantal Julliard
    • 1
    • 9
    • 10
  • Darko Katić
    • 11
    • 12
  • Hannes Kenngott
    • 14
  • Lena Maier-Hein
    • 2
  • Keno März
    • 2
  • Elena de Momi
    • 3
  • Dénes Ákos Nagy
    • 7
    • 8
  • Hirenkumar Nakawala
    • 3
  • Juliane Neumann
    • 15
  • Thomas Neumuth
    • 15
  • Javier Rojas Balderrama
    • 1
    • 16
  • Stefanie Speidel
    • 13
  • Martin Wagner
    • 14
  • Pierre Jannin
    • 1
  1. 1.Inserm, LTSI – UMR_S 1099Univ RennesRennesFrance
  2. 2.Division of Computer Assisted Medical InterventionsGerman Cancer Research Center (DKFZ)HeidelbergGermany
  3. 3.NEARLABPolitecnico di MilanoMilanItaly
  4. 4.MIPS LaboratoryUniversity of Haute-AlsaceMulhouseFrance
  5. 5.Instituto Politécnico de Castelo BrancoCastelo BrancoPortugal
  6. 6.IDMEC, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  7. 7.Antal Bejczy Center for Intelligent RoboticsÓbuda UniversityBudapestHungary
  8. 8.Austrian Center for Medical Innovation and Technology (ACMIT)Wiener NeustadtAustria
  9. 9.LIRMMUniversité de MontpellierMontpellierFrance
  10. 10.Stryker GmbHFreiburgGermany
  11. 11.Karlsruhe Institute of TechnologyInstitute for Anthropomatics and RoboticsKarlsruheGermany
  12. 12.ArtiMinds Robotics GmbHKarlsruheGermany
  13. 13.National Center for Tumor Diseases (NCT)DresdenGermany
  14. 14.Department of General, Abdominal and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
  15. 15.Innovation Center Computer Assisted SurgeryLeipzig UniversityLeipzigGermany
  16. 16.INRIARennesFrance

Personalised recommendations